This Test Guideline describes an in vitro procedure that may be used for the hazard identification of irritant chemicals (substances and mixtures) in accordance with the UN Globally Harmonized System of Classification and Labelling (GHS) Category 2.
This Test Guideline describes an in vitro procedure that may be used for the hazard identification of irritant chemicals (substances and mixtures) in accordance with the UN Globally Harmonized System of Classification and Labelling (GHS) Category 2 ...
The test described in this Test Guideline allows the identification of corrosive chemical substances and mixtures and it enables the identification of non-corrosive substances and mixtures when supported by a weight of evidence determination using other existing information.
This open access book presents recent advances in the pure sciences that are of significance in the quest for alternatives to the use of animals in research and describes a variety of practical applications of the three key guiding principles for the more ethical use of animals in experiments – replacement, reduction, and refinement, collectively known as the 3Rs. Important examples from across the world of implementation of the 3Rs in the testing of cosmetics, chemicals, pesticides, and biologics, including vaccines, are described, with additional information on relevant regulations. The coverage also encompasses emerging approaches to alternative tests and the 3Rs. The book is based on the most informative contributions delivered at the Asian Congress 2016 on Alternatives and Animal Use in the Life Sciences. It will be of value for those working in R&D, for graduate students, and for educators in various fields, including the pharmaceutical and cosmetic sciences, pharmacology, toxicology, and animal welfare. The free, open access distribution of Alternatives to Animal Testing is enabled by the Creative Commons Attribution license in International version 4: CC BY 4.0.
This Test Guideline addresses the human health endpoint skin corrosion. It is based on the rat skin transcutaneous electrical resistance (TER) test method, which utilizes skin discs to identify corrosives by their ability to produce a loss of normal stratum corneum integrity and barrier function.
This updated Test Guideline 435 provides an in vitro membrane barrier test method that can be used to identify corrosive chemicals. The test method utilizes an artificial membrane designed to respond to corrosive chemicals in a manner similar to animal skin in situ.
Skin phototoxicity (photoirritation) is defined as an acute toxic response elicited by topically or systemically administered photoreactive chemicals after the exposure of the skin to environmental light. The in vitro reconstructed human epidermis phototoxicity test (RhE PT) is used to identify the phototoxic potential of a test chemical after topical application in reconstructed human epidermis (RhE) tissues in the presence and absence of simulated sunlight.
This Test Guideline (TG) provides an in vitro procedure (the ARE-Nrf2 luciferase test method) used for supporting the discrimination between skin sensitisers and non-sensitisers in accordance with the UN GHS.
This book provides comprehensive information on the alternative (non-animal) dermal toxicity test methods currently available for industrial, regulatory, and academic use and also explores potential future developments. It encompasses all areas of dermal toxicity, including skin irritation, skin corrosion, skin sensitization, UV-induced effects, and skin genotoxicity. An individual chapter is devoted to each test method, with coverage of the scientific basis, validation status and regulatory acceptance, applications and limitations, available protocols, and potential role within testing strategies. In addition, perspectives from the test developer are presented, for example regarding critical steps in the protocol. The closing section addresses areas that may be of relevance for the future of dermal toxicity safety testing, including the validation and regulatory acceptance of integrated testing strategies, novel complex skin models, and high-throughput screening techniques.