Obstacle Avoidance Control for the REMUS Autonomous Underwater Vehicle

Obstacle Avoidance Control for the REMUS Autonomous Underwater Vehicle

Author: Christopher D. Chuhran

Publisher:

Published: 2003-09

Total Pages: 63

ISBN-13: 9781423547617

DOWNLOAD EBOOK

As the Navy continues its development of unmanned underwater vehicles, the need for total autonomous missions grows. Autonomous Underwater Vehicles (AUV) allow for advances in mine warfare, harbor reconnaissance, undersea warfare and more. Information can be collected from AUVs and downloaded into a ship or battle group's network. As AUVs are developed it is clear forward-look sonar will be required to be able to detect obstacles in front of its search path. Common obstacles in the littoral environment include reefs and seawalls which an AUV will need to rise above to pass. This thesis examines the behavior and control system required for an AUV to maneuver over an obstacle in the vertical plane. Hydrodynamic modeling of a REMUS vehicle enables a series of equations of motion to be developed to be used in conjunction with a sliding mode controller to control the elevation of the AUV. A two-dimensional, 24 deg. vertical scan forward look sonar with a range of 100 m is modeled for obstacle detection. Sonar mappings from geographic range-bearing coordinates are developed for use in MATLAB simulations. The sonar 'image' of the vertical obstacle allows for an increasing altitude command that forces the AUV to pass safely over the obstacles at a reasonable rate of ascent and pitch angle. Once the AUV has passed over the obstacle, the vehicle returns to its regular search altitude. This controller is simulated over different types of obstacles.


Obstacle Avoidance Control for the REMUS Autonomous Underwater Vehicle

Obstacle Avoidance Control for the REMUS Autonomous Underwater Vehicle

Author: Lynn R. Fodrea

Publisher:

Published: 2002-12

Total Pages: 79

ISBN-13: 9781423505464

DOWNLOAD EBOOK

Future Naval operations necessitate the incorporation of autonomous underwater vehicles into a collaborative network. In future complex missions, a forward look capability will be required to map and avoid obstacles such as sunken ships. This thesis examines obstacle avoidance behaviors using a forward- looking sonar for the autonomous underwater vehicle REMUS. Hydrodynamic coefficients are used to develop steering equations that model REMUS through a track of specified points similar to a real-world mission track. Control of REMUS is accomplished using line of sight and state feedback controllers. A two- dimensional forward-looking sonar model with a 1200 horizontal scan and a 110 meter radial range is modeled for obstacle detection. Sonar mappings from geographic range-bearing coordinates are developed for implementation in MATLAE simulations. The product of bearing and range weighting functions form the gain factor for a dynamic obstacle avoidance behavior. The overall vehicle heading error incorporates this obstacle avoidance term to develop a path around detected objects. REMUS is a highly responsive vehicle in the model and is capable of avoiding multiple objects in proximity along its track path.


Obstacle Avoidance Control for the REMUS Autonomous Underwater Vehicle

Obstacle Avoidance Control for the REMUS Autonomous Underwater Vehicle

Author:

Publisher:

Published: 2002

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Future Naval operations necessitate the incorporation of autonomous underwater vehicles into a collaborative network. In future complex missions, a forward look capability will be required to map and avoid obstacles such as sunken ships. This thesis examines obstacle avoidance behaviors using a forward-looking sonar for the autonomous underwater vehicle REMUS. Hydrodynamic coefficients are used to develop steering equations that model REMUS through a track of specified points similar to a real-world mission track. Control of REMUS is accomplished using line of sight and state feedback controllers. A two-dimensional forward-looking sonar model with a 1200 horizontal scan and a 110 meter radial range is modeled for obstacle detection. Sonar mappings from geographic range-bearing coordinates are developed for implementation in MATLAE simulations. The product of bearing and range weighting functions form the gain factor for a dynamic obstacle avoidance behavior. The overall vehicle heading error incorporates this obstacle avoidance term to develop a path around detected objects. REMUS is a highly responsive vehicle in the model and is capable of avoiding multiple objects in proximity along its track path.


Obstacle Avoidance Control for the REMUS Autonomous Underwater Vehicle

Obstacle Avoidance Control for the REMUS Autonomous Underwater Vehicle

Author: Lynn Fodrea

Publisher:

Published: 2002

Total Pages: 63

ISBN-13:

DOWNLOAD EBOOK

Future Naval operations necessitate the incorporation of autonomous underwater vehicles into a collaborative network. In future complex missions, a forward look capability will be required to map and avoid obstacles such as sunken ships. This thesis examines obstacle avoidance behaviors using a forward-looking sonar for the autonomous underwater vehicle REMUS. Hydrodynamic coefficients are used to develop steering equations that model REMUS through a track of specified points similar to a real-world mission track. Control of REMUS is accomplished using line of sight and state feedback controllers. A two-dimensional forward-looking sonar model with a 1200 horizontal scan and a 110 meter radial range is modeled for obstacle detection. Sonar mappings from geographic range-bearing coordinates are developed for implementation in MATLAE simulations. The product of bearing and range weighting functions form the gain factor for a dynamic obstacle avoidance behavior. The overall vehicle heading error incorporates this obstacle avoidance term to develop a path around detected objects. REMUS is a highly responsive vehicle in the model and is capable of avoiding multiple objects in proximity along its track path.


Obstacle Avoidance While Bottom Following for the REMUS Autonomous Underwater Vehicle

Obstacle Avoidance While Bottom Following for the REMUS Autonomous Underwater Vehicle

Author:

Publisher:

Published: 2004

Total Pages: 7

ISBN-13:

DOWNLOAD EBOOK

Future Naval operations necessitate the incorporation of autonomous underwater vehicles into a collaborative network. In future complex missions, a forward look capability will also be required to map and avoid obstacles such as sunken ships and reefs. Following previous work on steering control, this work examines collision avoidance behaviors in bottom following using a hypothetical forward-looking sonar for the autonomous underwater vehicle REMUS. Hydrodynamic coefficients are used to develop diving equations that model REMUS behaviors. A two-dimensional forward-looking sonar model with a 20 vertical scan and a 40 meter radial range is modeled for obstacle detection. Sonar mappings from geographic range-bearing coordinates are developed for implementation in MATLAB simulations. REMUS is a highly responsive vehicle and care has taken to balance pitch and heave response to keep the obstacle to be avoided in sight during the response behavior.


Reactive Obstacle Avoidance for the REMUS Autonomous Underwater Vehicle Utilizing a Forward Looking Sonar

Reactive Obstacle Avoidance for the REMUS Autonomous Underwater Vehicle Utilizing a Forward Looking Sonar

Author:

Publisher:

Published: 2006

Total Pages: 79

ISBN-13:

DOWNLOAD EBOOK

One day fully autonomous AUV's will no longer require human interactions to complete its missions. To make this a reality, the AUV must be able to safely navigate in unfamiliar environments with unknown obstacles. This thesis builds on previous work conducted at NPS's Center for AUV Research to improve the autonomy of the REMUS class of AUVs with an implemented FLS. The first part of this thesis deals with accurate path following with the use of look-ahead pitch calculations. With the use of a SIMULINK model, constraints surrounding obstacle avoidance path planning are then explored, focusing on optimal sensor orientation issues. Two path planning methods are developed to address the issues of a limited sonar field of view and uncertainties brought on by an occlusion area. The first approach utilizes a pop-up maneuver to increase the field of view and minimize the occlusion area, while the second approach creates a path with the addition of a spline. Comparing the two methods, it was concluded that spline addition planner provided a robust optimal obstacle avoidance path and along with the look-ahead pitch controller completes the design of a back-seat driver to improve REMUS s survivability in an unknown environment. REMUS, AUV, UUV, Autonomous Underwater Vehicle, Reactive Obstacle Avoidance, Forward Looking Sonar, Vertical Plane, Pitch Controller, Spline, Gaussian, Occlusion, Optimal Sensor Orientation.


Vertical Plane Obstacle Avoidance and Control of the REMUS Autonomous Underwater Vehicle Using Forward Look Sonar

Vertical Plane Obstacle Avoidance and Control of the REMUS Autonomous Underwater Vehicle Using Forward Look Sonar

Author:

Publisher:

Published: 2005

Total Pages: 81

ISBN-13:

DOWNLOAD EBOOK

Current rates of technological advancement continue to translate into changes on our battlefields. Aerial robots capable of gathering reconnaissance along with unmanned underwater vehicles capable of defusing enemy minefields provide evidence that machines are playing key roles once played by humans within our military. This thesis explores one of the major problems facing both commercial and military UUVs to date. Successfully navigating in unfamiliar environments and maneuvering autonomously to avoid obstacles is a problem that has yet to be fully solved. Using a simulated 2-D ocean environment, the work of this thesis provides results of numerous REMUS simulations that model the vehicle s flight path over selected sea bottoms. Relying on a combination of sliding mode control and feedforward preview control, REMUS is able to locate obstacles such as seawalls using processed forward look sonar images. Once recognized, REMUS maneuvers to avoid the obstacle according to a Gaussian potential function. In summary, the integration of feedforward preview control and sliding mode control results in an obstacle avoidance controller that is not only robust, but also autonomous.


Advances in Unmanned Marine Vehicles

Advances in Unmanned Marine Vehicles

Author: G.N. Roberts

Publisher: IET

Published: 2006-01-31

Total Pages: 461

ISBN-13: 0863414508

DOWNLOAD EBOOK

Unmanned marine vehicles (UMVs) include autonomous underwater vehicles, remotely operated vehicles, semi-submersibles and unmanned surface craft. Considerable importance is being placed on the design and development of such vehicles, as they provide cost-effective solutions to a number of littoral, coastal and offshore problems. This book highlights the advanced technology that is evolving to meet the challenges being posed in this exciting and growing area of research.


Autonomous Underwater Vehicles

Autonomous Underwater Vehicles

Author: Nuno Cruz

Publisher: BoD – Books on Demand

Published: 2011-10-21

Total Pages: 274

ISBN-13: 9533074329

DOWNLOAD EBOOK

Autonomous Underwater Vehicles (AUVs) are remarkable machines that revolutionized the process of gathering ocean data. Their major breakthroughs resulted from successful developments of complementary technologies to overcome the challenges associated with autonomous operation in harsh environments. Most of these advances aimed at reaching new application scenarios and decreasing the cost of ocean data collection, by reducing ship time and automating the process of data gathering with accurate geo location. With the present capabilities, some novel paradigms are already being employed to further exploit the on board intelligence, by making decisions on line based on real time interpretation of sensor data. This book collects a set of self contained chapters covering different aspects of AUV technology and applications in more detail than is commonly found in journal and conference papers. They are divided into three main sections, addressing innovative vehicle design, navigation and control techniques, and mission preparation and analysis. The progress conveyed in these chapters is inspiring, providing glimpses into what might be the future for vehicle technology and applications.


Guidance and Control of Underwater Vehicles 2003 (GCUV 2003)

Guidance and Control of Underwater Vehicles 2003 (GCUV 2003)

Author: G. N. Roberts

Publisher: Elsevier Science & Technology

Published: 2003

Total Pages: 260

ISBN-13:

DOWNLOAD EBOOK

This volume contains forty papers from the 1st IFAC Workshop on Guidance and Control of Underwater Vehicles. The aim of the Workshop was to bring together academic practitioners and industrialists involved in this important and expanding area of interest in order to exchange experiences on recent advances in this field. Topics covered by the papers in this proceeding include UUV Control Applications, System Identification, UUV Architectures, Navigation, Modelling, Fault Detection and Reconfiguration. Contributors from Italy, Ireland, Japan, Portugal, Spain, Turkey, USA and the United Kingdom were represented at the workshop.The Workshop was voted a resounding success by all delegates and in the light of this vote of confidence the Technical Committee on Marine Systems is planning to run this event again in 2005, with the slightly amended title of Navigation, Guidance and Control of Underwater Vehicles