Numerical Solutions of Boundary Value Problems of Non-linear Differential Equations

Numerical Solutions of Boundary Value Problems of Non-linear Differential Equations

Author: Sujaul Chowdhury

Publisher: CRC Press

Published: 2021-10-25

Total Pages: 112

ISBN-13: 1000486117

DOWNLOAD EBOOK

The book presents in comprehensive detail numerical solutions to boundary value problems of a number of non-linear differential equations. Replacing derivatives by finite difference approximations in these differential equations leads to a system of non-linear algebraic equations which we have solved using Newton’s iterative method. In each case, we have also obtained Euler solutions and ascertained that the iterations converge to Euler solutions. We find that, except for the boundary values, initial values of the 1st iteration need not be anything close to the final convergent values of the numerical solution. Programs in Mathematica 6.0 were written to obtain the numerical solutions.


Numerical Solution of Nonlinear Boundary Value Problems with Applications

Numerical Solution of Nonlinear Boundary Value Problems with Applications

Author: Milan Kubicek

Publisher: Courier Corporation

Published: 2008-01-01

Total Pages: 338

ISBN-13: 0486463001

DOWNLOAD EBOOK

A survey of the development, analysis, and application of numerical techniques in solving nonlinear boundary value problems, this text presents numerical analysis as a working tool for physicists and engineers. Starting with a survey of accomplishments in the field, it explores initial and boundary value problems for ordinary differential equations, linear boundary value problems, and the numerical realization of parametric studies in nonlinear boundary value problems. The authors--Milan Kubicek, Professor at the Prague Institute of Chemical Technology, and Vladimir Hlavacek, Professor at the University of Buffalo--emphasize the description and straightforward application of numerical techniques rather than underlying theory. This approach reflects their extensive experience with the application of diverse numerical algorithms.


Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Author: Uri M. Ascher

Publisher: SIAM

Published: 1994-12-01

Total Pages: 620

ISBN-13: 9781611971231

DOWNLOAD EBOOK

This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.


Numerical Solutions of Boundary Value Problems of Non-Linear Differential Equations

Numerical Solutions of Boundary Value Problems of Non-Linear Differential Equations

Author: Sujaul Chowdhury

Publisher: Chapman & Hall/CRC

Published: 2021-10-25

Total Pages: 102

ISBN-13: 9781003204916

DOWNLOAD EBOOK

The book presents in comprehensive detail numerical solutions to boundary value problems of a number of non-linear differential equations. Replacing derivatives by finite difference approximations in these differential equations leads to a system of non-linear algebraic equations which we have solved using Newton's iterative method. In each case, we have also obtained Euler solutions and ascertained that the iterations converge to Euler solutions. We find that, except for the boundary values, initial values of the 1st iteration need not be anything close to the final convergent values of the numerical solution. Programs in Mathematica 6.0 were written to obtain the numerical solutions.


Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations

Author: A.K. Aziz

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 380

ISBN-13: 1483267997

DOWNLOAD EBOOK

Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations covers the proceedings of the 1974 Symposium by the same title, held at the University of Maryland, Baltimore Country Campus. This symposium aims to bring together a number of numerical analysis involved in research in both theoretical and practical aspects of this field. This text is organized into three parts encompassing 15 chapters. Part I reviews the initial and boundary value problems. Part II explores a large number of important results of both theoretical and practical nature of the field, including discussions of the smooth and local interpolant with small K-th derivative, the occurrence and solution of boundary value reaction systems, the posteriori error estimates, and boundary problem solvers for first order systems based on deferred corrections. Part III highlights the practical applications of the boundary value problems, specifically a high-order finite-difference method for the solution of two-point boundary-value problems on a uniform mesh. This book will prove useful to mathematicians, engineers, and physicists.


Numerical Methods for Two-Point Boundary-Value Problems

Numerical Methods for Two-Point Boundary-Value Problems

Author: Herbert B. Keller

Publisher: Courier Dover Publications

Published: 2018-11-14

Total Pages: 416

ISBN-13: 0486835626

DOWNLOAD EBOOK

Elementary yet rigorous, this concise treatment explores practical numerical methods for solving very general two-point boundary-value problems. The approach is directed toward students with a knowledge of advanced calculus and basic numerical analysis as well as some background in ordinary differential equations and linear algebra. After an introductory chapter that covers some of the basic prerequisites, the text studies three techniques in detail: initial value or "shooting" methods, finite difference methods, and integral equations methods. Sturm-Liouville eigenvalue problems are treated with all three techniques, and shooting is applied to generalized or nonlinear eigenvalue problems. Several other areas of numerical analysis are introduced throughout the study. The treatment concludes with more than 100 problems that augment and clarify the text, and several research papers appear in the Appendixes.


Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Author: Inna Shingareva

Publisher: Springer Science & Business Media

Published: 2011-07-24

Total Pages: 372

ISBN-13: 370910517X

DOWNLOAD EBOOK

The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).