Numerical Simulation in Applied Geophysics

Numerical Simulation in Applied Geophysics

Author: Juan Enrique Santos

Publisher: Birkhäuser

Published: 2017-01-13

Total Pages: 312

ISBN-13: 3319484575

DOWNLOAD EBOOK

This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications. The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM). Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow diffusion-type waves at mesoscopic-scale heterogeneities (on the order of centimeters), effect usually occurring in the seismic range of frequencies. In some cases, a Biot medium presents a dense set of fractures oriented in preference directions. When the average distance between fractures is much smaller than the wavelengths of the travelling fast compressional and shear waves, the medium behaves as an effective viscoelastic and anisotropic medium at the macroscale. The book presents a procedure determine the coefficients of the effective medium employing a collection of time-harmonic compressibility and shear experiments, in the context of Numerical Rock Physics. Each experiment is associated with a boundary value problem, that is solved using the FEM. This approach offers an alternative to laboratory observations with the advantages that they are inexpensive, repeatable and essentially free from experimental errors. The different topics are followed by illustrative examples of application in Geophysical Exploration. In particular, the effects caused by mesoscopic-scale heterogeneities or the presence of aligned fractures are taking into account in the seismic wave propagation models at the macroscale. The numerical simulations of wave propagation are presented with sufficient detail as to be easily implemented assuming the knowledge of scientific programming techniques.


Numerical Methods for Fluid Dynamics

Numerical Methods for Fluid Dynamics

Author: Dale R. Durran

Publisher: Springer Science & Business Media

Published: 2010-09-14

Total Pages: 527

ISBN-13: 1441964126

DOWNLOAD EBOOK

This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean


Applied Geophysics: Modeling and Simulation

Applied Geophysics: Modeling and Simulation

Author: Karl Seibert

Publisher:

Published: 2019-06-13

Total Pages: 219

ISBN-13: 9781682866429

DOWNLOAD EBOOK

Applied geophysics is concerned with the implementation of geophysical theories and concepts to practical problems and tasks of civil engineering such as groundwater mapping, ore and mineral prospecting, etc. It studies physical phenomena like magnetism, electricity, radioactivity, etc. It also encompasses geological concepts to understand and analyze dynamics of plate tectonics, volcanism, rock formation, Earth's gravitational and magnetic fields, etc. The principles of applied geophysics are also significant to a number of prominent disciplines such as Earth systems science, climatology, earthquake research, etc. This book is compiled to provide in-depth knowledge about the theory and practice of geophysics. It strives to provide a fair idea about this discipline and to help develop a better understanding of the latest advances within this field. The content included herein is appropriate for students seeking detailed information in this area as well as for experts.


Numerical Modeling of Seismic Wave Propagation

Numerical Modeling of Seismic Wave Propagation

Author: Johan O. A. Robertsson

Publisher: SEG Books

Published: 2012

Total Pages: 115

ISBN-13: 1560802901

DOWNLOAD EBOOK

The decades following SEG's 1990 volume on numerical modeling showed a step change in the application and use of full wave equation modeling methods enabled by the increase in computational power. Full waveform inversion, reverse time migration, and 3D elastic finite-difference synthetic data generation are examples. A searchable CD is included.


Numerical Simulation of Reactive Flow in Hot Aquifers

Numerical Simulation of Reactive Flow in Hot Aquifers

Author: Christoph Clauser

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 339

ISBN-13: 3642556841

DOWNLOAD EBOOK

This product, consisting of a CD-ROM and a book, deals with the numerical simulation of reactive transport in porous media using the simulation package SHEMAT/Processing SHEMAT. SHEMAT (Simulator for HEat and MAss Transport) is an easy-to-use, general-purpose reactive transport simulation code for a wide variety of thermal and hydrogeological problems in two or three dimensions. The book is a richly documented manual for users of this software which discusses in detail the coded physical and chemical equations. Thus, it provides the in-depth background required by those who want to apply the code for solving advanced technical and scientific problems. The enclosed companion CD-ROM contains the software and data for all of the case studies. The software includes user-friendly pre- and post-processors which make it very easy to set up a model, run it and view the results, all from one platform. Therefore, the software is also very suitable for academic or technical "hands-on" courses for simulating flow, transport of heat and mass, and chemical reactions in porous media. You can find a link to the updated software on springer.com .


Three Dimensional Geophysical Modeling

Three Dimensional Geophysical Modeling

Author: Andrea Villa

Publisher: Ledizioni

Published: 2010

Total Pages: 134

ISBN-13: 8895994140

DOWNLOAD EBOOK

The main object of this thesis is to provide a comprehensive numerical tool forthe three-dimensional simulation of sedimentary basins [94]. Sedimentary basins, in particular salt basins, are the best places to find oil, natural gas and to store dangerous nuclear waste material. The low permeability of salt guarantees low water leakage which is the main concern for the safety of a nuclear waste storage. For this reason one of the best places for a nuclear waste depository is a salt mine. These two applications call for a thorough knowledge of the basin evolution on geological time scales. Until now sedimentary basin studies have been based mainly on geological interpretation: experienced specialists estimate the history of a basin on the basis of common knowledge. More often, they provide a list of possible scenarios. An appropriate numerical simulator can provide the right tool to choose, among these scenarios, the correct one or, at least, the most realistic.


Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

Author: Dale R. Durran

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 476

ISBN-13: 1475730810

DOWNLOAD EBOOK

Covering a wide range of techniques, this book describes methods for the solution of partial differential equations which govern wave propagation and are used in modeling atmospheric and oceanic flows. The presentation establishes a concrete link between theory and practice.


Shallow Geophysical Mass Flows down Arbitrary Topography

Shallow Geophysical Mass Flows down Arbitrary Topography

Author: Ioana Luca

Publisher: Springer

Published: 2016-02-02

Total Pages: 286

ISBN-13: 3319026275

DOWNLOAD EBOOK

Geophysical mass flows, such as landslides, avalanches or debris flows, are frequent mass movement processes in mountain areas and often cause disastrous damage. This book lays a foundation for formulating the depth-averaged equations describing the shallow geophysical mass flows over non-trivial topography. It consists of the detailed derivation of the model equations. The stimulating numerical examples demonstrate how the proposed models are applied. All this make this book accessible to a wide variety of readers, especially senior undergraduate and graduate students of fluid mechanics, civil engineering, applied mathematics, engineering geology, geophysics or engineers who are responsible for hazard management.