Numerical Polynomial Algebra

Numerical Polynomial Algebra

Author: Hans J. Stetter

Publisher: SIAM

Published: 2004-05-01

Total Pages: 475

ISBN-13: 0898715571

DOWNLOAD EBOOK

This book is the first comprehensive treatment of numerical polynomial algebra, an area which so far has received little attention.


Numerically Solving Polynomial Systems with Bertini

Numerically Solving Polynomial Systems with Bertini

Author: Daniel J. Bates

Publisher: SIAM

Published: 2013-11-08

Total Pages: 372

ISBN-13: 1611972698

DOWNLOAD EBOOK

This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental task of solving a given polynomial system and describes the latest advances in the field, including algorithms for intersecting and projecting algebraic sets, methods for treating singular sets, the nascent field of real numerical algebraic geometry, and applications to large polynomial systems arising from differential equations. Those who wish to solve polynomial systems can start gently by finding isolated solutions to small systems, advance rapidly to using algorithms for finding positive-dimensional solution sets (curves, surfaces, etc.), and learn how to use parallel computers on large problems. These techniques are of interest to engineers and scientists in fields where polynomial equations arise, including robotics, control theory, economics, physics, numerical PDEs, and computational chemistry.


Computer Algebra and Polynomials

Computer Algebra and Polynomials

Author: Jaime Gutierrez

Publisher: Springer

Published: 2015-01-20

Total Pages: 222

ISBN-13: 3319150812

DOWNLOAD EBOOK

Algebra and number theory have always been counted among the most beautiful mathematical areas with deep proofs and elegant results. However, for a long time they were not considered that important in view of the lack of real-life applications. This has dramatically changed: nowadays we find applications of algebra and number theory frequently in our daily life. This book focuses on the theory and algorithms for polynomials over various coefficient domains such as a finite field or ring. The operations on polynomials in the focus are factorization, composition and decomposition, basis computation for modules, etc. Algorithms for such operations on polynomials have always been a central interest in computer algebra, as it combines formal (the variables) and algebraic or numeric (the coefficients) aspects. The papers presented were selected from the Workshop on Computer Algebra and Polynomials, which was held in Linz at the Johann Radon Institute for Computational and Applied Mathematics (RICAM) during November 25-29, 2013, at the occasion of the Special Semester on Applications of Algebra and Number Theory.


A Polynomial Approach to Linear Algebra

A Polynomial Approach to Linear Algebra

Author: Paul A. Fuhrmann

Publisher: Springer Science & Business Media

Published: 2012-10-01

Total Pages: 368

ISBN-13: 1441987347

DOWNLOAD EBOOK

A Polynomial Approach to Linear Algebra is a text which is heavily biased towards functional methods. In using the shift operator as a central object, it makes linear algebra a perfect introduction to other areas of mathematics, operator theory in particular. This technique is very powerful as becomes clear from the analysis of canonical forms (Frobenius, Jordan). It should be emphasized that these functional methods are not only of great theoretical interest, but lead to computational algorithms. Quadratic forms are treated from the same perspective, with emphasis on the important examples of Bezoutian and Hankel forms. These topics are of great importance in applied areas such as signal processing, numerical linear algebra, and control theory. Stability theory and system theoretic concepts, up to realization theory, are treated as an integral part of linear algebra. Finally there is a chapter on Hankel norm approximation for the case of scalar rational functions which allows the reader to access ideas and results on the frontier of current research.


Numerical Polynomial Algebra

Numerical Polynomial Algebra

Author: Hans J. Stetter

Publisher: SIAM

Published: 2004-01-01

Total Pages: 487

ISBN-13: 9780898717976

DOWNLOAD EBOOK

In many important areas of scientific computing, polynomials in one or more variables are employed in the mathematical modeling of real-life phenomena; yet most of classical computer algebra assumes exact rational data. This book is the first comprehensive treatment of the emerging area of numerical polynomial algebra, an area that falls between classical numerical analysis and classical computer algebra but, surprisingly, has received little attention so far. The author introduces a conceptual framework that permits the meaningful solution of various algebraic problems with multivariate polynomial equations whose coefficients have some indeterminacy; for this purpose, he combines approaches of both numerical linear algebra and commutative algebra. For the application scientist, Numerical Polynomial Algebra provides both a survey of polynomial problems in scientific computing that may be solved numerically and a guide to their numerical treatment. In addition, the book provides both introductory sections and novel extensions of numerical analysis and computer algebra, making it accessible to the reader with expertise in either one of these areas.


Numerical Methods for Roots of Polynomials - Part II

Numerical Methods for Roots of Polynomials - Part II

Author: J.M. McNamee

Publisher: Newnes

Published: 2013-07-19

Total Pages: 749

ISBN-13: 008093143X

DOWNLOAD EBOOK

Numerical Methods for Roots of Polynomials - Part II along with Part I (9780444527295) covers most of the traditional methods for polynomial root-finding such as interpolation and methods due to Graeffe, Laguerre, and Jenkins and Traub. It includes many other methods and topics as well and has a chapter devoted to certain modern virtually optimal methods. Additionally, there are pointers to robust and efficient programs. This book is invaluable to anyone doing research in polynomial roots, or teaching a graduate course on that topic. - First comprehensive treatment of Root-Finding in several decades with a description of high-grade software and where it can be downloaded - Offers a long chapter on matrix methods and includes Parallel methods and errors where appropriate - Proves invaluable for research or graduate course


Numerical Mathematics

Numerical Mathematics

Author: Alfio Quarteroni

Publisher: Springer

Published: 2017-01-26

Total Pages: 669

ISBN-13: 0387227504

DOWNLOAD EBOOK

The purpose of this book is to provide the mathematical foundations of numerical methods, to analyze their basic theoretical properties and to demonstrate their performances on examples and counterexamples. Within any specific class of problems, the most appropriate scientific computing algorithms are reviewed, their theoretical analyses are carried out and the expected results are verified using the MATLAB software environment. Each chapter contains examples, exercises and applications of the theory discussed to the solution of real-life problems. While addressed to senior undergraduates and graduates in engineering, mathematics, physics and computer sciences, this text is also valuable for researchers and users of scientific computing in a large variety of professional fields.


Solving Systems of Polynomial Equations

Solving Systems of Polynomial Equations

Author: Bernd Sturmfels

Publisher: American Mathematical Soc.

Published: 2002

Total Pages: 162

ISBN-13: 0821832514

DOWNLOAD EBOOK

Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.


Solving Polynomial Equations

Solving Polynomial Equations

Author: Alicia Dickenstein

Publisher: Springer Science & Business Media

Published: 2005-04-27

Total Pages: 433

ISBN-13: 3540243267

DOWNLOAD EBOOK

This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.


The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science

The Numerical Solution Of Systems Of Polynomials Arising In Engineering And Science

Author: Andrew J Sommese

Publisher: World Scientific

Published: 2005-03-21

Total Pages: 425

ISBN-13: 9814480886

DOWNLOAD EBOOK

Written by the founders of the new and expanding field of numerical algebraic geometry, this is the first book that uses an algebraic-geometric approach to the numerical solution of polynomial systems and also the first one to treat numerical methods for finding positive dimensional solution sets. The text covers the full theory from methods developed for isolated solutions in the 1980's to the most recent research on positive dimensional sets.