Numerical Modelling of Wave Energy Converters

Numerical Modelling of Wave Energy Converters

Author: Matt Folley

Publisher: Academic Press

Published: 2016-06-14

Total Pages: 308

ISBN-13: 0128032111

DOWNLOAD EBOOK

Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques. The authors provide clear details on the subject and guidance on its use for WEC design, covering topics such as boundary element methods, frequency domain models, spectral domain models, time domain models, non linear potential flow models, CFD models, semi analytical models, phase resolving wave propagation models, phase averaging wave propagation models, parametric design and control optimization, mean annual energy yield, hydrodynamic loads assessment, and environmental impact assessment. Each chapter starts by defining the fundamental principles underlying the numerical modelling technique and finishes with a discussion of the technique's limitations and a summary of the main points in the chapter. The contents of the chapters are not limited to a description of the mathematics, but also include details and discussion of the current available tools, examples available in the literature, and verification, validation, and computational requirements. In this way, the key points of each modelling technique can be identified without having to get deeply involved in the mathematical representation that is at the core of each chapter. The book is separated into four parts. The first two parts deal with modelling single wave energy converters; the third part considers the modelling of arrays; and the final part looks at the application of the different modelling techniques to the four most common uses of numerical models. It is ideal for graduate engineers and scientists interested in numerical modelling of wave energy converters, and decision-makers who must review different modelling techniques and assess their suitability and output. - Consolidates in one volume information and techniques for the numerical modelling of wave energy converters and converter arrays, which has, up until now, been spread around multiple academic journals and conference proceedings making it difficult to access - Presents a comparative review of the different numerical modelling techniques applied to wave energy converters, discussing their limitations, current available tools, examples, and verification, validation, and computational requirements - Includes practical examples and simulations available for download at the book's companion website - Identifies key points of each modelling technique without getting deeply involved in the mathematical representation


Numerical Modelling of Wave Energy Converters

Numerical Modelling of Wave Energy Converters

Author: Matt Folley

Publisher: Academic Press

Published: 2016-06-01

Total Pages: 304

ISBN-13: 9780128032107

DOWNLOAD EBOOK

Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques. The authors provide clear details on the subject and guidance on its use for WEC design, covering topics such as boundary element methods, frequency domain models, spectral domain models, time domain models, non linear potential flow models, CFD models, semi analytical models, phase resolving wave propagation models, phase averaging wave propagation models, parametric design and control optimization, mean annual energy yield, hydrodynamic loads assessment, and environmental impact assessment. Each chapter starts by defining the fundamental principles underlying the numerical modelling technique and finishes with a discussion of the technique's limitations and a summary of the main points in the chapter. The contents of the chapters are not limited to a description of the mathematics, but also include details and discussion of the current available tools, examples available in the literature, and verification, validation, and computational requirements. In this way, the key points of each modelling technique can be identified without having to get deeply involved in the mathematical representation that is at the core of each chapter. The book is separated into four parts. The first two parts deal with modelling single wave energy converters; the third part considers the modelling of arrays; and the final part looks at the application of the different modelling techniques to the four most common uses of numerical models. It is ideal for graduate engineers and scientists interested in numerical modelling of wave energy converters, and decision-makers who must review different modelling techniques and assess their suitability and output. Consolidates in one volume information and techniques for the numerical modelling of wave energy converters and converter arrays, which has, up until now, been spread around multiple academic journals and conference proceedings making it difficult to access Presents a comparative review of the different numerical modelling techniques applied to wave energy converters, discussing their limitations, current available tools, examples, and verification, validation, and computational requirements Includes practical examples and simulations available for download at the book's companion website Identifies key points of each modelling technique without getting deeply involved in the mathematical representation


Ocean Wave Energy Systems

Ocean Wave Energy Systems

Author: Abdus Samad

Publisher: Springer Nature

Published: 2021-08-21

Total Pages: 586

ISBN-13: 3030787168

DOWNLOAD EBOOK

This book offers a timely review of wave energy and its conversion mechanisms. Written having in mind current needs of advanced undergraduates engineering students, it covers the whole process of energy generation, from waves to electricity, in a systematic and comprehensive manner. Upon a general introduction to the field of wave energy, it presents analytical calculation methods for estimating wave energy potential in any given location. Further, it covers power-take off (PTOs), describing their mechanical and electrical aspects in detail, and control systems and algorithms. The book includes chapters written by active researchers with vast experience in their respective filed of specialization. It combines basic aspects with cutting-edge research and methods, and selected case studies. The book offers systematic and practice-oriented knowledge to students, researchers, and professionals in the wave energy sector. Chapters 17 of this book is available open access under a CC BY 4.0 license at link.springer.com


Wave and Tidal Energy

Wave and Tidal Energy

Author: Deborah Greaves

Publisher: John Wiley & Sons

Published: 2018-03-28

Total Pages: 717

ISBN-13: 111901445X

DOWNLOAD EBOOK

Eine umfassende Publikation zu sämtlichen Aspekten der Wellen- und Gezeitenenergie. Wave and Tidal Energy gibt einen ausführlichen Überblick über die Entwicklung erneuerbarer Energie aus dem Meer, bezieht sich auf die neueste Forschung und Erfahrungen aus Anlagentests. Das Buch verfolgt zwei Ziele, zum einen vermittelt es Einsteigern in das Fachgebiet eine Überblick über die Wellen- und Gezeitenenergie, zum anderen ist es ein Referenzwerk für komplexere Studien und die Praxis. Es vermittelt Detailwissen zu wichtigen Themen wie Ressourcencharakterisierung, Technologie für Wellen- und Gezeitenanlagen, Stromversorgungssysteme, numerische und physikalische Modellierung, Umwelteffekte und Politik. Zusätzlich enthält es eine aktuelle Übersicht über Entwicklungen in der ganzen Welt sowie Fallstudien zu ausgewählten Projekten. Hauptmerkmale: - Ausführliches Referenzwerk zu allen Aspekten der interdisziplinären Fachrichten Wellen- und Gezeitenenergie. - Greift auf die neuesten Forschungsergebnisse und die Erfahrung führender Experten in der numerischen und laborgestützten Modellierung zurück. - Gibt einen Überblick über regionale Entwicklungen in aller Welt, repräsentative Projekte werden in Fallstudien vorgestellt. Wave and Tidal Energy ist ein wertvolles Referenzwerk für eine breite Leserschaft, von Studenten der Ingenieurwissenschaften und technischen Managern über politische Entscheidungsträger bis hin zu Studienabsolventen und Forschern.


Handbook of Ocean Wave Energy

Handbook of Ocean Wave Energy

Author: Arthur Pecher

Publisher: Springer

Published: 2016-12-07

Total Pages: 305

ISBN-13: 331939889X

DOWNLOAD EBOOK

This book is open access under a CC BY-NC 2.5 license. This book offers a concise, practice-oriented reference-guide to the field of ocean wave energy. The ten chapters highlight the key rules of thumb, address all the main technical engineering aspects and describe in detail all the key aspects to be considered in the techno-economic assessment of wave energy converters. Written in an easy-to-understand style, the book answers questions relevant to readers of different backgrounds, from developers, private and public investors, to students and researchers. It is thereby a valuable resource for both newcomers and experienced practitioners in the wave energy sector.


Ocean Waves and Oscillating Systems

Ocean Waves and Oscillating Systems

Author: Johannes Falnes

Publisher: Cambridge University Press

Published: 2020-05-28

Total Pages: 319

ISBN-13: 1108481663

DOWNLOAD EBOOK

Understand the absorption of energy from ocean waves by means of oscillating systems with this useful new edition. Essential for engineers, researchers, and graduate students, and an indispensable tool for those who work in this field.


Ocean Wave Energy Conversion

Ocean Wave Energy Conversion

Author: Aurelien Babarit

Publisher: Elsevier

Published: 2017-11-17

Total Pages: 264

ISBN-13: 0081023901

DOWNLOAD EBOOK

The waves that animate the surface of the oceans represent a deposit of renewable energy that for the most part is still unexploited today. This is not for lack of effort, as for more than two hundred years inventors, researchers and engineers have struggled to develop processes and systems to recover the energy of the waves. While all of these efforts have failed to converge towards a satisfactory technological solution, the result is a rich scientific and technical literature as well as extensive and varied feedback from experience. For the uninitiated, this abundance is an obstacle. In order to facilitate familiarization with the subject, we propose in this work a summary of the state of knowledge on the potential of wave energy as well as on the processes and technologies of its recovery (wave energy converters). In particular, we focus on the problem of positioning wave energy in the electricity market, the development of wave energy conversion technologies from a historical perspective, and finally the energy performance of the devices. This work is aimed at students, researchers, developers, industry professionals and decision makers who wish to acquire a global perspective and the necessary tools to understand the field. - Reviews the state of knowledge and developments on wave energy recovery - Presents the history of wave energy recovery - Classifies the various systems for recovering this type of energy


Hydrodynamic Control of Wave Energy Devices

Hydrodynamic Control of Wave Energy Devices

Author: Umesh A. Korde

Publisher: Cambridge University Press

Published: 2016-09-26

Total Pages: 385

ISBN-13: 1316720640

DOWNLOAD EBOOK

With this self-contained and comprehensive text, students and researchers will gain a detailed understanding of the fundamental aspects of the hydrodynamic control of wave energy converters. Such control is necessary to maximise energy capture for a given device configuration and plays a major role in efforts to make wave energy economic. Covering a wide range of disciplines, the reader is taken from the mathematical and technical fundamentals, through the main pillars of wave energy hydrodynamic control, right through to state-of-the-art algorithms for hydrodynamic control. The various operating principles of wave energy converters are exposed and the unique aspects of the hydrodynamic control problem highlighted, with a variety of potential solutions discussed. Supporting material on wave forecasting and the interaction of the hydrodynamic control problem with other aspects of wave energy device optimisation, such as device geometry optimisation and optimal device array layout, is also provided.


Ocean Wave Energy

Ocean Wave Energy

Author: Joao Cruz

Publisher: Springer

Published: 2010-11-22

Total Pages: 0

ISBN-13: 9783642094316

DOWNLOAD EBOOK

The authors of this timely reference provide an updated and global view on ocean wave energy conversion – and they do so for wave energy developers as well as for students and professors. The book is orientated to the practical solutions that this new industry has found so far and the problems that any device needs to face. It describes the actual principles applied to machines that convert wave power to electricity and examines state-of-the-art modern systems.


Modelling and Optimization of Wave Energy Converters

Modelling and Optimization of Wave Energy Converters

Author: Dezhi Ning

Publisher: CRC Press

Published: 2022-07-28

Total Pages: 384

ISBN-13: 1000629112

DOWNLOAD EBOOK

Wave energy offers a promising renewable energy source, however, technologies converting wave energy into useful electricity face many design challenges. This guide presents numerical modelling and optimization methods for the development of wave energy converter technologies, from principles to applications. It covers the development status and perspectives of wave energy converter systems; the fundamental theories on wave power absorption; the modern wave energy converter concepts including oscillating bodies in single and multiple degree of freedom and oscillating water column technologies; and the relatively hitherto unexplored topic of wave energy harvesting farms. It can be used as a specialist student textbook as well as a reference book for the design of wave energy harvesting systems, across a broad range of disciplines, including renewable energy, marine engineering, infrastructure engineering, hydrodynamics, ocean science, and mechatronics engineering. The Open Access version of this book, available at www.routledge.com has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.