Asia's 48 countries have an estimated 1.757 billion urban population and 2.4 billion people in rural areas (or approximately 60 per cent of the global population). Divided into central, eastern, southern, south-eastern and western regions, the continent is also extremely heterogeneous in terms of water quality conditions. The policies and management practices vary significantly from one country to another, and even within one country, depending on specific economic, political, social, environmental, legal and institutional factors. In order to appreciate the complexities associated with water quality policy and management, it is important to acknowledge the multiplicity of interrelated and often conflicting events, issues, actors and interests, both within and outside the water sector that impact them. This complexity, alongside institutional inability for systematic and coordinated collaboration, are potent reasons as to why, in the second decade of the 21st century, formulation and implementation of efficient water quality management policies benefitting humankind and the environment have still not been achieved. The book was originally published as a special issue of the International Journal of Water Resources Development.
Coastal zones are among the world's most densely populated and economically important areas, but these factors put pressure on the often limited available freshwater resources. Global change will undoubtedly increase this pressure through the combined effects of increased population, economic development, rising sea levels, increased evapotranspiration, over-extraction and the salinization of coastal aquifers, decreasing river discharges, and accelerating land subsidence. Saline groundwater exfiltration is a common problem in the coastal zone of the Netherlands, but the hydrological processes and physiographic factors that affect this are not fully understood. The research presented in this book aims to identify the processes and physiographic factors controlling the spatial variability and temporal dynamics of the exfiltration of saline groundwater to surface water, and hence the contribution of saline groundwater to surface water salinity. Topics covered include a paleo-hydrogeological model simulation of the Holocene evolution of groundwater salinity as a result of paleo-geographic changes; surface water salinity dynamics in a densely-drained lowland catchment; hydrograph separation in an agricultural catchment; observations of heads, flow, solute concentration and temperature to constrain a detailed, variable-density groundwater flow and transport model; and a model to simulate the salinity dynamics of exfiltrating groundwater to support operational water management of freshwater resources in coastal lowlands. The book further outlines the implications of these findings for freshwater management in the Netherlands. The book demonstrates that the salinity of groundwater exfiltrating in polders in the Netherlands, and hence surface water salinity, varies on a wide range of spatial and temporal scales.
The Intergovernmental Panel on Climate Change (IPCC) is the leading international body for assessing the science related to climate change. It provides policymakers with regular assessments of the scientific basis of human-induced climate change, its impacts and future risks, and options for adaptation and mitigation. This IPCC Special Report on the Ocean and Cryosphere in a Changing Climate is the most comprehensive and up-to-date assessment of the observed and projected changes to the ocean and cryosphere and their associated impacts and risks, with a focus on resilience, risk management response options, and adaptation measures, considering both their potential and limitations. It brings together knowledge on physical and biogeochemical changes, the interplay with ecosystem changes, and the implications for human communities. It serves policymakers, decision makers, stakeholders, and all interested parties with unbiased, up-to-date, policy-relevant information. This title is also available as Open Access on Cambridge Core.
The book assembles the latest research on new design techniques in water supplies using desalinated seawater. The authors examine the diverse issues related to the intakes and outfalls of these facilities. They clarify how and why these key components of the facilities impact the cost of operation and subsequently the cost of water supplied to the consumers. The book consists of contributed articles from a number of experts in the field who presented their findings at the "Desalination Intakes and Outfalls" workshop held at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia in October, 2013. The book integrates coverage relevant to a wide variety of researchers and professionals in the general fields of environmental engineering and sustainable development.
Coastal aquifers serve as major sources for freshwater supply in many countries around the world, especially in arid and semi-arid zones. Many coastal areas are also heavily urbanized, a fact that makes the need for freshwater even more acute. Coastal aquifers are highly sensitive to disturbances. Inappropriate management of a coastal aquifer may lead to its destruction as a source for freshwater much earlier than other aquifers which are not connected to the sea. The reason is the threat of seawater intrusion. In many coastal aquifers, intrusion of seawater has become one of the major constraints imposed on groundwater utilization. As sea water intrusion progresses, existing pumping wells, especially those close to the coast, become saline and have to be abandoned. Also, the area above the intruding seawater wedge is lost as a source of natural replenishment to the aquifer. Despite the importance of this subject, so far there does not exist a book that integrates our present knowledge of seawater intrusion, its occurrences, physical mechanism, chemistry, exploration by geo physical and geochemical techniques, conceptual and mathematical modeling, analytical and numerical solution methods, engineering measures of combating seawater intrusion, management strategies, and experience learned from case studies. By presenting this fairly comprehensive volume on the state-of-the-art of knowledge and ex perience on saltwater intrusion, we hoped to transfer this body of knowledge to the geologists, hydrologists, hydraulic engineers, water resources planners, managers, and governmental policy makers, who are engaged in the sustainable development of coastal fresh ground water resources.