Numerical analysis is the study of computation and its accuracy, stability and often its implementation on a computer. This book focuses on the principles of numerical analysis and is intended to equip those readers who use statistics to craft their own software and to understand the advantages and disadvantages of different numerical methods.
This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mathematical tools to statistical problems. The first half of the book offers a basic background in numerical analysis that emphasizes issues important to statisticians. The next several chapters cover a broad array of statistical tools, such as maximum likelihood and nonlinear regression. The author also treats the application of numerical tools; numerical integration and random number generation are explained in a unified manner reflecting complementary views of Monte Carlo methods. Each chapter contains exercises that range from simple questions to research problems. Most of the examples are accompanied by demonstration and source code available from the author's website. New in this second edition are demonstrations coded in R, as well as new sections on linear programming and the Nelder–Mead search algorithm.
Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.
Numerical analysis forms a cornerstone of numeric computing and optimization, in particular recently, interval numerical computations play an important role in these topics. The interest of researchers in computations involving uncertain data, namely interval data opens new avenues in coping with real-world problems and deliver innovative and efficient solutions. This book provides the basic theoretical foundations of numerical methods, discusses key technique classes, explains improvements and improvements, and provides insights into recent developments and challenges. The theoretical parts of numerical methods, including the concept of interval approximation theory, are introduced and explained in detail. In general, the key features of the book include an up-to-date and focused treatise on error analysis in calculations, in particular the comprehensive and systematic treatment of error propagation mechanisms, considerations on the quality of data involved in numerical calculations, and a thorough discussion of interval approximation theory. Moreover, this book focuses on approximation theory and its development from the perspective of linear algebra, and new and regular representations of numerical integration and their solutions are enhanced by error analysis as well. The book is unique in the sense that its content and organization will cater to several audiences, in particular graduate students, researchers, and practitioners.
This book presents the central ideas of modern numerical analysis in a vivid and straightforward fashion with a minimum of fuss and formality. Stewart designed this volume while teaching an upper-division course in introductory numerical analysis. To clarify what he was teaching, he wrote down each lecture immediately after it was given. The result reflects the wit, insight, and verbal craftmanship which are hallmarks of the author. Simple examples are used to introduce each topic, then the author quickly moves on to the discussion of important methods and techniques. With its rich mixture of graphs and code segments, the book provides insights and advice that help the reader avoid the many pitfalls in numerical computation that can easily trap an unwary beginner. Written by a leading expert in numerical analysis, this book is certain to be the one you need to guide you through your favorite textbook.
A graduate-level introduction balancing theory and application, providing full coverage of classical methods with many practical examples and demonstration programs.
This book presents the latest numerical solutions to initial value problems and boundary value problems described by ODEs and PDEs. The author offers practical methods that can be adapted to solve wide ranges of problems and illustrates them in the increasingly popular open source computer language R, allowing integration with more statistically based methods. The book begins with standard techniques, followed by an overview of 'high resolution' flux limiters and WENO to solve problems with solutions exhibiting high gradient phenomena. Meshless methods using radial basis functions are then discussed in the context of scattered data interpolation and the solution of PDEs on irregular grids. Three detailed case studies demonstrate how numerical methods can be used to tackle very different complex problems. With its focus on practical solutions to real-world problems, this book will be useful to students and practitioners in all areas of science and engineering, especially those using R.
At last—a social scientist's guide through the pitfalls of modern statistical computing Addressing the current deficiency in the literature on statistical methods as they apply to the social and behavioral sciences, Numerical Issues in Statistical Computing for the Social Scientist seeks to provide readers with a unique practical guidebook to the numerical methods underlying computerized statistical calculations specific to these fields. The authors demonstrate that knowledge of these numerical methods and how they are used in statistical packages is essential for making accurate inferences. With the aid of key contributors from both the social and behavioral sciences, the authors have assembled a rich set of interrelated chapters designed to guide empirical social scientists through the potential minefield of modern statistical computing. Uniquely accessible and abounding in modern-day tools, tricks, and advice, the text successfully bridges the gap between the current level of social science methodology and the more sophisticated technical coverage usually associated with the statistical field. Highlights include: A focus on problems occurring in maximum likelihood estimation Integrated examples of statistical computing (using software packages such as the SAS, Gauss, Splus, R, Stata, LIMDEP, SPSS, WinBUGS, and MATLAB®) A guide to choosing accurate statistical packages Discussions of a multitude of computationally intensive statistical approaches such as ecological inference, Markov chain Monte Carlo, and spatial regression analysis Emphasis on specific numerical problems, statistical procedures, and their applications in the field Replications and re-analysis of published social science research, using innovative numerical methods Key numerical estimation issues along with the means of avoiding common pitfalls A related Web site includes test data for use in demonstrating numerical problems, code for applying the original methods described in the book, and an online bibliography of Web resources for the statistical computation Designed as an independent research tool, a professional reference, or a classroom supplement, the book presents a well-thought-out treatment of a complex and multifaceted field.
Instead of presenting the standard theoretical treatments that underlie the various numerical methods used by scientists and engineers, Using R for Numerical Analysis in Science and Engineering shows how to use R and its add-on packages to obtain numerical solutions to the complex mathematical problems commonly faced by scientists and engineers. This practical guide to the capabilities of R demonstrates Monte Carlo, stochastic, deterministic, and other numerical methods through an abundance of worked examples and code, covering the solution of systems of linear algebraic equations and nonlinear equations as well as ordinary differential equations and partial differential equations. It not only shows how to use R’s powerful graphic tools to construct the types of plots most useful in scientific and engineering work, but also: Explains how to statistically analyze and fit data to linear and nonlinear models Explores numerical differentiation, integration, and optimization Describes how to find eigenvalues and eigenfunctions Discusses interpolation and curve fitting Considers the analysis of time series Using R for Numerical Analysis in Science and Engineering provides a solid introduction to the most useful numerical methods for scientific and engineering data analysis using R.
This text teaches the essentials of C programming, concentrating on what readers need to know in order to produce stand-alone programs and so solve typical scientific and engineering problems. It is a learning-by-doing book, with many examples and exercises, and lays a foundation of scientific programming concepts and techniques that will prove valuable for those who might eventually move on to another language. Written for undergraduates who are familiar with computers and typical applications but are new to programming.