Number Theory IV

Number Theory IV

Author: A.N. Parshin

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 351

ISBN-13: 3662036444

DOWNLOAD EBOOK

This book is a survey of the most important directions of research in transcendental number theory. For readers with no specific background in transcendental number theory, the book provides both an overview of the basic concepts and techniques and also a guide to the most important results and references.


Research Directions in Number Theory

Research Directions in Number Theory

Author: Jennifer S. Balakrishnan

Publisher: Springer

Published: 2019-08-01

Total Pages: 208

ISBN-13: 3030194787

DOWNLOAD EBOOK

These proceedings collect several number theory articles, most of which were written in connection to the workshop WIN4: Women in Numbers, held in August 2017, at the Banff International Research Station (BIRS) in Banff, Alberta, Canada. It collects papers disseminating research outcomes from collaborations initiated during the workshop as well as other original research contributions involving participants of the WIN workshops. The workshop and this volume are part of the WIN network, aimed at highlighting the research of women and gender minorities in number theory as well as increasing their participation and boosting their potential collaborations in number theory and related fields.


Lectures on Number Theory

Lectures on Number Theory

Author: Peter Gustav Lejeune Dirichlet

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 297

ISBN-13: 0821820176

DOWNLOAD EBOOK

Lectures on Number Theory is the first of its kind on the subject matter. It covers most of the topics that are standard in a modern first course on number theory, but also includes Dirichlet's famous results on class numbers and primes in arithmetic progressions.


Combinatorial and Additive Number Theory IV

Combinatorial and Additive Number Theory IV

Author: Melvyn B. Nathanson

Publisher: Springer Nature

Published: 2021-08-12

Total Pages: 445

ISBN-13: 3030679969

DOWNLOAD EBOOK

This is the fourth in a series of proceedings of the Combinatorial and Additive Number Theory (CANT) conferences, based on talks from the 2019 and 2020 workshops at the City University of New York. The latter was held online due to the COVID-19 pandemic, and featured speakers from North and South America, Europe, and Asia. The 2020 Zoom conference was the largest CANT conference in terms of the number of both lectures and participants. These proceedings contain 25 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003 at the CUNY Graduate Center, the workshop surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, zero-sum sequences, minimal complements, analytic and prime number theory, Hausdorff dimension, combinatorial and discrete geometry, and Ramsey theory. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.


数论导引

数论导引

Author:

Publisher:

Published: 2007

Total Pages: 435

ISBN-13: 9787115156112

DOWNLOAD EBOOK

本书内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分化等。


Number, Shape, & Symmetry

Number, Shape, & Symmetry

Author: Diane L. Herrmann

Publisher: CRC Press

Published: 2012-10-18

Total Pages: 446

ISBN-13: 1466554649

DOWNLOAD EBOOK

Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.


Introduction to Analytic Number Theory

Introduction to Analytic Number Theory

Author: Tom M. Apostol

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 352

ISBN-13: 1475755791

DOWNLOAD EBOOK

"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS


Analysis IV

Analysis IV

Author: Roger Godement

Publisher: Springer

Published: 2015-04-30

Total Pages: 535

ISBN-13: 3319169076

DOWNLOAD EBOOK

Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be `modern' and `classical', is universally useful whereas the second part leads the reader towards a very active and specialized field of research, with possibly broad generalizations.


Number Theory

Number Theory

Author: W.A. Coppel

Publisher: Springer Science & Business Media

Published: 2006-02-02

Total Pages: 392

ISBN-13: 9780387298511

DOWNLOAD EBOOK

This two-volume book is a modern introduction to the theory of numbers, emphasizing its connections with other branches of mathematics. Part A is accessible to first-year undergraduates and deals with elementary number theory. Part B is more advanced and gives the reader an idea of the scope of mathematics today. The connecting theme is the theory of numbers. By exploring its many connections with other branches a broad picture is obtained. The book contains a treasury of proofs, several of which are gems seldom seen in number theory books.