This book is a printed edition of the Special Issue "Nucleation of Minerals: Precursors, Intermediates and Their Use in Materials Chemistry" that was published in Minerals
In the last decade, numerous studies have demonstrated the existence of alternative pathways to nucleation and crystallisation that oppose the classical view. Such proposed scenarios include multistage reactions proceeding via various precursor species and/or intermediate phases. The aim of this book is to review and discuss these recent advances in our understanding of the early stages of mineralisation through a series of contributions that address both experimental and theoretical studies about the formation and nature of initial precursor species (e.g., prenucleation clusters, dense liquid phases, amorphous nanoparticles, etc.) as well as their transformations leading to the stable mineral phase. Several chapters are devoted to cutting-edge analytical techniques used for investigating the above processes in situ, in real time and at conditions relevant to both natural and industrial processes. At the end of the book, the editors summarize the key questions that still need to be addressed in order to establish a complete picture of the nucleation and growth processes involved during the formation of minerals
Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and hence the structure of the crust of the Earth during processes such as metamorphism, metasomatism, and weathering. In recent years focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical methods such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, and advanced synchrotron-based applications, to enable mineral surfaces to be imaged and analyzed at the nanoscale. Experiments are increasingly complemented by molecular simulations to confirm or predict the results of these studies. This has enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions. In this Special Issue, “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research.
This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods in biomineralization science, and includes sections on such topics as determining solution chemistry, structure and nucleation; probing structure and dynamics at surfaces; and interfaces mapping biomineral and morphology and ultrastructure. - Continues the legacy of this premier serial with quality chapters authored by leaders in the field - Covers research methods in biomineralization science - Contains sections on such topics as and includes sections on such topics as determining solution chemistry, structure and nucleation; probing structure and dynamics at surfaces; and interfaces mapping biomineral and morphology and ultrastructure
In the last decade, numerous studies have demonstrated the existence of alternative pathways to nucleation and crystallisation that oppose the classical view. Such proposed scenarios include multistage reactions proceeding via various precursor species and/or intermediate phases. The aim of this book is to review and discuss these recent advances in our understanding of the early stages of mineralisation through a series of contributions that address both experimental and theoretical studies about the formation and nature of initial precursor species (e.g., prenucleation clusters, dense liquid phases, amorphous nanoparticles, etc.) as well as their transformations leading to the stable mineral phase. Several chapters are devoted to cutting-edge analytical techniques used for investigating the above processes in situ, in real time and at conditions relevant to both natural and industrial processes. At the end of the book, the editors summarize the key questions that still need to be addressed in order to establish a complete picture of the nucleation and growth processes involved during the formation of minerals
Mineral Scales and Deposits: Scientific and Technological Approaches presents, in an integrated way, the problem of scale deposits (precipitation/crystallization of sparingly-soluble salts) in aqueous systems, both industrial and biological. It covers several fundamental aspects, also offering an applications' perspective, with the ultimate goal of helping the reader better understand the underlying mechanisms of scale formation, while also assisting the user/reader to solve scale-related challenges. It is ideal for scientists/experts working in academia, offering a number of crystal growth topics with an emphasis on mechanistic details, prediction modules, and inhibition/dispersion chemistry, amongst others. In addition, technologists, consultants, plant managers, engineers, and designers working in industry will find a field-friendly overview of scale-related challenges and technological options for their mitigation. - Provides a unique, detailed focus on scale deposits, includes the basic science and mechanisms of scale formation - Present a field-friendly overview of scale-related challenges and technological options for their mitigation - Correlates chemical structure to performance - Provides guidelines for easy assessment of a particular case, also including solutions - Includes an extensive list of industrial case studies for reference
A collection of abstracts for the 20th American Conference on Crystal Growth and Epitaxy (ACCGE-20) and 17th U.S. Biennial Workshop on Organometallic Vapor Phase Epitaxy (OMVPE-17) and The Second 2D Electronic Materials Symposium.