On the basis of the principles included in the Fundamental Safety Principles, IAEA Safety Standards Series No. SF-1, this Safety Requirements publication establishes requirements applicable to the design of nuclear power plants. It covers the design phase and provides input for the safe operation of the power plant. It elaborates on the safety objective, safety principles and concepts that provide the basis for deriving the safety requirements that must be met for the design of a nuclear power plant. Contents: 1. Introduction; 2. Applying the safety principles and concepts; 3. Management of safety in design; 4. Principal technical requirements; 5. General plant design; 6. Design of specific plant systems.
Covers the mechanical, chemical, thermal, hydraulic, neutronic and irradiation considerations important to the safe design of a nuclear reactor core. The core features of commonly used reactor types including light and heavy water reactors, as well as gas cooled reactors, are addressed.
This publication makes recommendations concerning safety features for incorporation into the design of the reactor core for a nuclear power plant, taking account of recent developments in the design of the reactor core and including guidance on general and specific design considerations. It supersedes IAEA Safety Series No. 50-SG-D14.
This publication provides recommendations and guidance for meeting Requirement 32 of IAEA Safety Standards Series No. SSR-2/1 (Rev. 1), Safety of Nuclear Power Plants: Design, for optimal operator performance involving systematic consideration of human factors, including the human machine interface (HMI). The Safety Guide provides a structured approach and guidance on application of human factors engineering (HFE) in the design of the HMI, which is the basis for human physical and cognitive processes in nuclear power plants. It applies to application of HFE in the design, operation and maintenance of the HMI for new plants, as well as for modifications of the HMI of existing plants.
This Safety Guide provides recommendations on meeting the requirements of IAEA Safety Standards Series No. SSR-2/1 (Rev. 1) relevant to reactor containment and associated systems. The publication addresses the containment structure and the systems with the functions of isolation, control and management of mass and energy releases, control and limitation of radioactive releases, and control and management of combustible gases. The Safety Guide is intended for use primarily for land based, stationary nuclear power plants with water cooled reactors designed for electricity generation or for other heat generating applications, such as for district heating or desalination.
Covers all aspects of electrical systems for nuclear power plants written by an authority in the field Based on author Omar Mazzoni's notes for a graduate level course he taught in Electrical Engineering, this book discusses all aspects of electrical systems for nuclear power plants, making reference to IEEE nuclear standards and regulatory documents. It covers such important topics as the requirements for equipment qualification, acceptance testing, periodic surveillance, and operational issues. It also provides excellent guidance for students in understanding the basis of nuclear plant electrical systems, the industry standards that are applicable, and the Nuclear Regulatory Commission's rules for designing and operating nuclear plants. Electrical Systems for Nuclear Power Plants offers in-depth chapters covering: elements of a power system; special regulations and requirements; unique requirements of a Class 1E power system; nuclear plants containment electrical penetration assemblies; on-site emergency AC sources; on-site emergency DC sources; protective relaying; interface of the nuclear plant with the grid; station blackout (SBO) issues and regulations; review of electric power calculations; equipment aging and decommissioning; and electrical and control systems inspections. This valuable resource: Evaluates industry standards and their relationship to federal regulations Discusses Class 1E equipment, emergency generation, the single failure criterion, plant life, and plant inspection Includes exercise problems for each chapter Electrical Systems for Nuclear Power Plants is an ideal text for instructors and students in electrical power courses, as well as for engineers active in operating nuclear power plants.
This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.
Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply. Building structures required for nuclear plants whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overview from approval aspects given by nuclear and construction law, with special attention to the interface between plant and construction engineering, to a building structure classification. All life cycle phases are considered, with the primary focus on execution. Accidental actions on structures, the safety concept and design and fastening systems are exposed to a particular treatment. Selected chapters from the German concrete yearbook are now being published in the new English "Beton-Kalender Series" for the benefit of an international audience. Since it was founded in 1906, the Ernst & Sohn "Beton-Kalender" has been supporting developments in reinforced and prestressed concrete. The aim was to publish a yearbook to reflect progress in "ferro-concrete" structures until - as the book's first editor, Fritz von Emperger (1862-1942), expressed it - the "tempestuous development" in this form of construction came to an end. However, the "Beton-Kalender" quickly became the chosen work of reference for civil and structural engineers, and apart from the years 1945-1950 has been published annually ever since.
This Safety Guide provides recommendations on the necessary characteristics of electrical power systems for nuclear power plants, and of the processes for developing these systems, in order to meet the safety requirements of IAEA Safety Standards Series No. SSR-2/1 (Rev. 1). It reflects the changes that have been made to SSR-2/1, in particular to Requirement 68 on Emergency Power Supply.