Dissertation Abstracts International
Author:
Publisher:
Published: 2005
Total Pages: 860
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author:
Publisher:
Published: 2005
Total Pages: 860
ISBN-13:
DOWNLOAD EBOOKAuthor: Ramona Vogt
Publisher: Elsevier
Published: 2007-06-04
Total Pages: 489
ISBN-13: 0080525369
DOWNLOAD EBOOKThis book is designed for advanced undergraduate and graduate students in high energy heavy-ion physics. It is relevant for students who will work on topics being explored at RHIC and the LHC. In the first part, the basic principles of these studies are covered including kinematics, cross sections (including the quark model and parton distribution functions), the geometry of nuclear collisions, thermodynamics, hydrodynamics and relevant aspects of lattice gauge theory at finite temperature. The second part covers some more specific probes of heavy-ion collisions at these energies: high mass thermal dileptons, quarkonium and hadronization. The second part also serves as extended examples of concepts learned in the previous part. Both parts contain examples in the text as well as exercises at the end of each chapter.- Designed for students and newcomers to the field- Focuses on hard probes and QCD- Covers all aspects of high energy heavy-ion physics- Includes worked example problems and exercises
Author: Herwig Schopper
Publisher: Springer Nature
Published: 2020
Total Pages: 632
ISBN-13: 3030382079
DOWNLOAD EBOOKThis first open access volume of the handbook series contains articles on the standard model of particle physics, both from the theoretical and experimental perspective. It also covers related topics, such as heavy-ion physics, neutrino physics and searches for new physics beyond the standard model. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Author: Thomas Schörner-Sadenius
Publisher: Springer
Published: 2015-05-15
Total Pages: 554
ISBN-13: 3319150014
DOWNLOAD EBOOKThis comprehensive volume summarizes and structures the multitude of results obtained at the LHC in its first running period and draws the grand picture of today’s physics at a hadron collider. Topics covered are Standard Model measurements, Higgs and top-quark physics, flavour physics, heavy-ion physics, and searches for supersymmetry and other extensions of the Standard Model. Emphasis is placed on overview and presentation of the lessons learned. Chapters on detectors and the LHC machine and a thorough outlook into the future complement the book. The individual chapters are written by teams of expert authors working at the forefront of LHC research.
Author: Jorge Casalderrey-Solana
Publisher: Cambridge University Press
Published: 2023-07-31
Total Pages: 469
ISBN-13: 1009403494
DOWNLOAD EBOOKAuthor: Rudolph C. Hwa
Publisher: CRC Press
Published: 1990
Total Pages: 338
ISBN-13: 9782881247347
DOWNLOAD EBOOKPapers of the June 1989 meeting in Beijing by the China Center of Advanced Science and Technology. This small book covers nucleus- nucleus collisions, states of the vacuum, and highly relativistic heavy ions in the experimental realm. Theoretical papers deal with quark-gluon plasma, and relativistic heavy ion collisions. Annotation copyrighted by Book News, Inc., Portland, OR
Author: L. P. Csernai
Publisher:
Published: 1994-05-10
Total Pages: 336
ISBN-13:
DOWNLOAD EBOOKIntroduction to Relativistic Heavy Ion Collisions László P. Csernai University of Bergen, Norway Written for postgraduates and advanced undergraduates in physics, this clear and concise work covers a wide range of subjects from intermediate to ultra-relativistic energies, thus providing an introductory overview of heavy ion physics. The reader is introduced to essential principles in heavy ion physics through a variety of questions, with answers, of varying difficulty. This timely text is based on a series of well received lectures given by Professor L. Csernai at the University of Minnesota, and the University of Bergen, where the author is based.
Author: Sourav Sarkar
Publisher: Springer Science & Business Media
Published: 2009-12-16
Total Pages: 374
ISBN-13: 3642022855
DOWNLOAD EBOOKThe aim of this book is to offer to the next generation of young researchers a broad and largely self-contained introduction to the physics of heavy ion collisions and the quark-gluon plasma, providing material beyond that normally found in the available textbooks. For each of the main aspects - QCD thermodynamics and global features of the QGP, collision hydrodynamics, electromagnetic probes, jet and quarkonium production, color glass condensate, and the gravity connection - the present volume provides extensive and pedagogical lectures, surveying the present status of both theory and experiment. A particular feature of this volume is that all lectures have been written with the active assistance of selected students present at the course in order to ensure the adequate level and coverage for the intended readership.
Author: Argonne National Laboratory. Physics Division
Publisher:
Published: 1998
Total Pages: 274
ISBN-13:
DOWNLOAD EBOOKAuthor: Bengt Friman
Publisher: Springer Science & Business Media
Published: 2011-03-10
Total Pages: 973
ISBN-13: 3642132928
DOWNLOAD EBOOKThis exhaustive survey is the result of a four year effort by many leading researchers in the field to produce both a readable introduction and a yardstick for the many upcoming experiments using heavy ion collisions to examine the properties of nuclear matter. The books falls naturally into five large parts, first examining the bulk properties of strongly interacting matter, including its equation of state and phase structure. Part II discusses elementary hadronic excitations of nuclear matter, Part III addresses the concepts and models regarding the space-time dynamics of nuclear collision experiments, Part IV collects the observables from past and current high-energy heavy-ion facilities in the context of the theoretical predictions specific to compressed baryonic matter. Part V finally gives a brief description of the experimental concepts. The book explicitly addresses everyone working or planning to enter the field of high-energy nuclear physics.