Proceedings of a workshop held at Oak Ridge, Tennessee, April 1988, deal with problems in atomic and nuclear physics that require access to supercomputing at effective rates of one gigaflop or more. Topics include strong fields, quarks, the few body problem, heavy-ion collisions, nuclear hydrodynamics, Monte Carlo techniques, and more. No subject index. Acidic paper. Annotation copyrighted by Book News, Inc., Portland, OR
The present volume contains the texts of the invited talks delivered at the Sev enth International Conference on Recent Progress in Many-Body Theories held at the University of Minnesota during the period August 26-31, 1991. The proceedings of the Fourth Conference (Oulu, Finland, 1987) and Fifth Conference (Arad, Israel, 1989) have been published by Plenum as the first two volumes of this series. Papers from the First Conference (Trieste, 1978) comprise Nuclear Physics volume A328, Nos. 1, 2. The Second Conference (Oaxtepec, Mexico, 1989) was published by Springer-Verlag as volume 142 of "Lecture Notes in Physics," entitled "Recent Progress in Many Body Theories." Volume 198 of the same series contains the papers from the Third Conference (Altenberg, Germany, 1983). These volumes are intended to cover a broad spectrum of current research topics in physics that benefit from the application of many-body theories for their elucidation. At the same time there is a focus on the development and refinement of many-body methods. One of the major aims of the conference series has been to foster the ex change of ideas among physicists working in such diverse areas as nucleon-nucleon in teractions, nuclear physics, astronomy, atomic and molecular physics, quantum chem istry, quantum fluids, and condensed matter physics. The present volume contains contributions from all of these areas.
Computer Simulation Studies in Condensed-Matter Physics VI provides a broad overview of recent developments in this field. Based on the last workshop, it presents invited and contributed papers which describe new physical results, simulational techniques and ways of interpreting simulational data. Both classical and quantum systems are discussed.
A clear illustration of how parallel computers can be successfully appliedto large-scale scientific computations. This book demonstrates how avariety of applications in physics, biology, mathematics and other scienceswere implemented on real parallel computers to produce new scientificresults. It investigates issues of fine-grained parallelism relevant forfuture supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configuredifferent massively parallel machines, design and implement basic systemsoftware, and develop algorithms for frequently used mathematicalcomputations. They also devise performance models, measure the performancecharacteristics of several computers, and create a high-performancecomputing facility based exclusively on parallel computers. By addressingall issues involved in scientific problem solving, Parallel ComputingWorks! provides valuable insight into computational science for large-scaleparallel architectures. For those in the sciences, the findings reveal theusefulness of an important experimental tool. Anyone in supercomputing andrelated computational fields will gain a new perspective on the potentialcontributions of parallelism. Includes over 30 full-color illustrations.
This volume presents five pedagogical articles spanning frontier developments in contemporary nuclear physics ranging from the physics of a single nucleon to nucleosynthesis in the Big Bang. Although the objectives of Advances in Nuclear Physics have been and will continue to be quite distinct from those of conventional conference proceedings, the articles in this volume are carefully edited and expanded manuscripts based on an outstanding series of lectures delivered at the VI J. A. Swieca Summer School in Brazil. Starting at the smallest scale, the first article by Dan Olof Riska addresses realistic chiral symmetric models of the nucleon. Since the analytic tools are not yet developed to solve nonperturbative QCD directly, significant effort has been devoted in recent years to the development of models which incorporate and are constrained by the approximate chiral symmetry manifested in QCD. This article provides a clear introduction to chiral symmetry and the Skyrme model, and discusses the Skyrme model’s relation to the chiral bag model, its extensions, and its application to nucleons and hyperons.
This book contains invited review papers and short notes presented at the International Conference on Physics, Chemistry and Application of Nanostructures (Nanomeeting 2003).
This symposium on Reflections and Directions in Low Energy Heavy-Ion Physics celebrates twenty years of the University Isotope Separator at Oak Ridge (UNISOR) and ten years of the Joint Institute for Heavy Ion Research (JIHIR). It reflects on the accomplishments in low energy heavy-ion science and emphasizes the new directions and opportunities to be explored with low energy heavy-ion facilities. It includes a special section devoted to structure theory and another emphasizing new research to result from facilities exhibiting radioactive ion beam capabilities, new generation recoil mass spectrometers and sophisticated gamma-ray detector arrays. With the participation of leading researchers in the field, the proceedings of this conference is a major reference work for graduate students and research workers in nuclear physics.