Nonparametric Econometric Methods and Application

Nonparametric Econometric Methods and Application

Author: Thanasis Stengos

Publisher: MDPI

Published: 2019-05-20

Total Pages: 224

ISBN-13: 3038979643

DOWNLOAD EBOOK

The present Special Issue collects a number of new contributions both at the theoretical level and in terms of applications in the areas of nonparametric and semiparametric econometric methods. In particular, this collection of papers that cover areas such as developments in local smoothing techniques, splines, series estimators, and wavelets will add to the existing rich literature on these subjects and enhance our ability to use data to test economic hypotheses in a variety of fields, such as financial economics, microeconomics, macroeconomics, labor economics, and economic growth, to name a few.


Nonparametric Econometrics

Nonparametric Econometrics

Author: Qi Li

Publisher: Princeton University Press

Published: 2011-10-09

Total Pages: 769

ISBN-13: 1400841062

DOWNLOAD EBOOK

A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.


Semiparametric and Nonparametric Methods in Econometrics

Semiparametric and Nonparametric Methods in Econometrics

Author: Joel L. Horowitz

Publisher: Springer

Published: 2009-08-07

Total Pages: 276

ISBN-13: 9780387928692

DOWNLOAD EBOOK

Standard methods for estimating empirical models in economics and many other fields rely on strong assumptions about functional forms and the distributions of unobserved random variables. Often, it is assumed that functions of interest are linear or that unobserved random variables are normally distributed. Such assumptions simplify estimation and statistical inference but are rarely justified by economic theory or other a priori considerations. Inference based on convenient but incorrect assumptions about functional forms and distributions can be highly misleading. Nonparametric and semiparametric statistical methods provide a way to reduce the strength of the assumptions required for estimation and inference, thereby reducing the opportunities for obtaining misleading results. These methods are applicable to a wide variety of estimation problems in empirical economics and other fields, and they are being used in applied research with increasing frequency. The literature on nonparametric and semiparametric estimation is large and highly technical. This book presents the main ideas underlying a variety of nonparametric and semiparametric methods. It is accessible to graduate students and applied researchers who are familiar with econometric and statistical theory at the level taught in graduate-level courses in leading universities. The book emphasizes ideas instead of technical details and provides as intuitive an exposition as possible. Empirical examples illustrate the methods that are presented. This book updates and greatly expands the author’s previous book on semiparametric methods in econometrics. Nearly half of the material is new.


Applied Nonparametric Econometrics

Applied Nonparametric Econometrics

Author: Daniel J. Henderson

Publisher: Cambridge University Press

Published: 2015-01-19

Total Pages: 381

ISBN-13: 110701025X

DOWNLOAD EBOOK

The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignores the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians. It discusses in depth, and in terms that someone with only one year of graduate econometrics can understand, basic to advanced nonparametric methods. The analysis starts with density estimation and motivates the procedures through methods that should be familiar to the reader. It then moves on to kernel regression, estimation with discrete data, and advanced methods such as estimation with panel data and instrumental variables models. The book pays close attention to the issues that arise with programming, computing speed, and application. In each chapter, the methods discussed are applied to actual data, paying attention to presentation of results and potential pitfalls.


The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics

The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics

Author: Jeffrey Racine

Publisher: Oxford University Press

Published: 2014-04

Total Pages: 562

ISBN-13: 0199857946

DOWNLOAD EBOOK

This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.


Applied Nonparametric Regression

Applied Nonparametric Regression

Author: Wolfgang Härdle

Publisher: Cambridge University Press

Published: 1990

Total Pages: 356

ISBN-13: 9780521429504

DOWNLOAD EBOOK

This is the first book to bring together in one place the techniques for regression curve smoothing involving more than one variable.


Nonparametric Econometric Methods

Nonparametric Econometric Methods

Author: Qi Li

Publisher: Emerald Group Publishing

Published: 2009-12-04

Total Pages: 570

ISBN-13: 1849506248

DOWNLOAD EBOOK

Contains a selection of papers presented initially at the 7th Annual Advances in Econometrics Conference held on the LSU campus in Baton Rouge, Louisiana during November 14-16, 2008. This work is suitable for those who wish to familiarize themselves with nonparametric methodology.


An Introduction to the Advanced Theory and Practice of Nonparametric Econometrics

An Introduction to the Advanced Theory and Practice of Nonparametric Econometrics

Author: Jeffrey S. Racine

Publisher: Cambridge University Press

Published: 2019-06-27

Total Pages: 436

ISBN-13: 1108757286

DOWNLOAD EBOOK

Interest in nonparametric methodology has grown considerably over the past few decades, stemming in part from vast improvements in computer hardware and the availability of new software that allows practitioners to take full advantage of these numerically intensive methods. This book is written for advanced undergraduate students, intermediate graduate students, and faculty, and provides a complete teaching and learning course at a more accessible level of theoretical rigor than Racine's earlier book co-authored with Qi Li, Nonparametric Econometrics: Theory and Practice (2007). The open source R platform for statistical computing and graphics is used throughout in conjunction with the R package np. Recent developments in reproducible research is emphasized throughout with appendices devoted to helping the reader get up to speed with R, R Markdown, TeX and Git.