Nonlinear Waves in Elastic Media

Nonlinear Waves in Elastic Media

Author: A.G. Kulikovskii

Publisher: CRC Press

Published: 2021-07-01

Total Pages: 252

ISBN-13: 1000446417

DOWNLOAD EBOOK

Nonlinear Waves in Elastic Media explores the theoretical results of one-dimensional nonlinear waves, including shock waves, in elastic media. It is the first book to provide an in-depth and comprehensive presentation of the nonlinear wave theory while taking anisotropy effects into account. The theory is completely worked out and draws on 15 years of research by the authors, one of whom also wrote the 1965 classic Magnetohydrodynamics. Nonlinear Waves in Elastic Media emphasizes the behavior of quasitransverse waves and analyzes arbitrary discontinuity disintegration problems, illustrating that the solution can be non-unique - a surprising result. The solution is shown to be especially interesting when anisotropy and nonlinearity effects interact, even in small-amplitude waves. In addition, the text contains an independent mathematical chapter describing general methods to study hyperbolic systems expressing the conservation laws. The theoretical results described in Nonlinear Waves in Elastic Media allow, for the first time, discovery and interpretation of many new peculiarities inherent to the general problem of discontinuous solutions and so provide a valuable resource for advanced students and researchers involved with continuum mechanics and partial differential equations.


Nonlinear Wave Processes in Acoustics

Nonlinear Wave Processes in Acoustics

Author: K. Naugolnykh

Publisher: Cambridge University Press

Published: 1998-05-28

Total Pages: 316

ISBN-13: 9780521399845

DOWNLOAD EBOOK

This text considers models of different "acoustic" media as well as equations and behavior of finite-amplitude waves. It also considers the effects of nonlinearity, dissipation, dispersion, and for two- and three-dimensional problems, reflection and diffraction on the evolution and interaction of acoustic beams.


Nonlinear Waves in Elastic Crystals

Nonlinear Waves in Elastic Crystals

Author: GĂ©rard A. Maugin

Publisher:

Published: 1999

Total Pages: 328

ISBN-13: 9780198534846

DOWNLOAD EBOOK

The mathematical modelling of changing structures in materials is of increasing importance to industry where applications of the theory are found in subjects as diverse as aerospace and medicine. This book deals with aspects of the nonlinear dynamics of deformable ordered solids (known as elastic crystals) where the nonlinear effects combine or compete with each other. Physical and mathematical models are discused and computational aspects are also included. Different models are considered - on discrete as well as continuum scales - applying heat, electricity, or magnetism to the crystal structure and these are analysed using the equations of rational mechanics. Students are introduced to the important equations of nonlinear science that describe shock waves, solitons and chaos and also the non-exactly integrable systems or partial differential equations. A large number of problems and examples are included, many taken from recent research and involving both one-dimensional and two-dimensional problems as well as some coupled degress of freedom.


Nonlinear Waves in Integrable and Non-integrable Systems

Nonlinear Waves in Integrable and Non-integrable Systems

Author: Jianke Yang

Publisher: SIAM

Published: 2010-12-02

Total Pages: 452

ISBN-13: 0898717051

DOWNLOAD EBOOK

Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).


Nonlinear Optical Waves

Nonlinear Optical Waves

Author: A.I. Maimistov

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 668

ISBN-13: 9401724482

DOWNLOAD EBOOK

A non-linear wave is one of the fundamental objects of nature. They are inherent to aerodynamics and hydrodynamics, solid state physics and plasma physics, optics and field theory, chemistry reaction kinetics and population dynamics, nuclear physics and gravity. All non-linear waves can be divided into two parts: dispersive waves and dissipative ones. The history of investigation of these waves has been lasting about two centuries. In 1834 J. S. Russell discovered the extraordinary type of waves without the dispersive broadening. In 1965 N. J. Zabusky and M. D. Kruskal found that the Korteweg-de Vries equation has solutions of the solitary wave form. This solitary wave demonstrates the particle-like properties, i. e. , stability under propagation and the elastic interaction under collision of the solitary waves. These waves were named solitons. In succeeding years there has been a great deal of progress in understanding of soliton nature. Now solitons have become the primary components in many important problems of nonlinear wave dynamics. It should be noted that non-linear optics is the field, where all soliton features are exhibited to a great extent. This book had been designed as the tutorial to the theory of non-linear waves in optics. The first version was projected as the book covering all the problems in this field, both analytical and numerical methods, and results as well. However, it became evident in the process of work that this was not a real task.


Amplification of Nonlinear Strain Waves in Solids

Amplification of Nonlinear Strain Waves in Solids

Author: Alexey V. Porubov

Publisher: World Scientific

Published: 2003

Total Pages: 229

ISBN-13: 9812383263

DOWNLOAD EBOOK

This book treats two problems simultaneously: sequential analytical consideration of nonlinear strain wave amplification and selection in wave guides and in a medium; demonstration of the use of even particular analytical solutions to nonintegrable equations in a design of numerical simulation of unsteady nonlinear wave processes. The text includes numerous detailed examples of the strain wave amplification and selection caused by the influence of an external medium, microstructure, moving point defects, and thermal phenomena. The main features of the book are: (1) nonlinear models of the strain wave evolution in a rod subjected by various dissipative/active factors; (2) an analytico-numerical approach for solutions to the governing nonlinear partial differential equations with dispersion and dissipation. This book is essential for introducing readers in mechanics, mechanical engineering, and applied mathematics to the concept of long nonlinear strain wave in one-dimensional wave guides. It is also suitable for self-study by professionals in all areas of nonlinear physics.


Linear and Nonlinear Waves

Linear and Nonlinear Waves

Author: G. B. Whitham

Publisher: John Wiley & Sons

Published: 2011-10-18

Total Pages: 660

ISBN-13: 1118031202

DOWNLOAD EBOOK

Now in an accessible paperback edition, this classic work is just as relevant as when it first appeared in 1974, due to the increased use of nonlinear waves. It covers the behavior of waves in two parts, with the first part addressing hyperbolic waves and the second addressing dispersive waves. The mathematical principles are presented along with examples of specific cases in communications and specific physical fields, including flood waves in rivers, waves in glaciers, traffic flow, sonic booms, blast waves, and ocean waves from storms.


Applied Wave Mathematics II

Applied Wave Mathematics II

Author: Arkadi Berezovski

Publisher: Springer Nature

Published: 2019-11-16

Total Pages: 396

ISBN-13: 3030299511

DOWNLOAD EBOOK

This book gathers contributions on various aspects of the theory and applications of linear and nonlinear waves and associated phenomena, as well as approaches developed in a global partnership of researchers with the national Centre of Excellence in Nonlinear Studies (CENS) at the Department of Cybernetics of Tallinn University of Technology in Estonia. The papers chiefly focus on the role of mathematics in the analysis of wave phenomena. They highlight the complexity of related topics concerning wave generation, propagation, transformation and impact in solids, gases, fluids and human tissues, while also sharing insights into selected mathematical methods for the analytical and numerical treatment of complex phenomena. In addition, the contributions derive advanced mathematical models, share innovative ideas on computing, and present novel applications for a number of research fields where both linear and nonlinear wave problems play an important role. The papers are written in a tutorial style, intended for non-specialist researchers and students. The authors first describe the basics of a problem that is currently of interest in the scientific community, discuss the state of the art in related research, and then share their own experiences in tackling the problem. Each chapter highlights the importance of applied mathematics for central issues in the study of waves and associated complex phenomena in different media. The topics range from basic principles of wave mechanics up to the mathematics of Planet Earth in the broadest sense, including contemporary challenges in the mathematics of society. In turn, the areas of application range from classic ocean wave mathematics to material science, and to human nerves and tissues. All contributions describe the approaches in a straightforward manner, making them ideal material for educational purposes, e.g. for courses, master class lectures, or seminar presentations.


Nonlinear Waves

Nonlinear Waves

Author: Lokenath Debnath

Publisher: CUP Archive

Published: 1983-12-30

Total Pages: 376

ISBN-13: 9780521254687

DOWNLOAD EBOOK

The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.