Nonlinear Time Series

Nonlinear Time Series

Author: Randal Douc

Publisher: CRC Press

Published: 2014-01-06

Total Pages: 548

ISBN-13: 1466502347

DOWNLOAD EBOOK

This text emphasizes nonlinear models for a course in time series analysis. After introducing stochastic processes, Markov chains, Poisson processes, and ARMA models, the authors cover functional autoregressive, ARCH, threshold AR, and discrete time series models as well as several complementary approaches. They discuss the main limit theorems for Markov chains, useful inequalities, statistical techniques to infer model parameters, and GLMs. Moving on to HMM models, the book examines filtering and smoothing, parametric and nonparametric inference, advanced particle filtering, and numerical methods for inference.


Dynamics and Control of Energy Systems

Dynamics and Control of Energy Systems

Author: Achintya Mukhopadhyay

Publisher: Springer Nature

Published: 2019-10-14

Total Pages: 526

ISBN-13: 9811505365

DOWNLOAD EBOOK

This book presents recent advances in dynamics and control of different types of energy systems. It covers research on dynamics and control in energy systems from different aspects, namely, combustion, multiphase flow, nuclear, chemical and thermal. The chapters start from the basic concepts so that this book can be useful even for researchers with very little background in the area. A dedicated chapter provides an overview on the fundamental aspects of the dynamical systems approach. The book will be of use to researchers and professionals alike.


Applied Nonlinear Time Series Analysis: Applications In Physics, Physiology And Finance

Applied Nonlinear Time Series Analysis: Applications In Physics, Physiology And Finance

Author: Michael Small

Publisher: World Scientific

Published: 2005-03-28

Total Pages: 261

ISBN-13: 981448122X

DOWNLOAD EBOOK

Nonlinear time series methods have developed rapidly over a quarter of a century and have reached an advanced state of maturity during the last decade. Implementations of these methods for experimental data are now widely accepted and fairly routine; however, genuinely useful applications remain rare. This book focuses on the practice of applying these methods to solve real problems.To illustrate the usefulness of these methods, a wide variety of physical and physiological systems are considered. The technical tools utilized in this book fall into three distinct, but interconnected areas: quantitative measures of nonlinear dynamics, Monte-Carlo statistical hypothesis testing, and nonlinear modeling. Ten highly detailed applications serve as case studies of fruitful applications and illustrate the mathematical techniques described in the text.


Nonlinear Time Series Analysis

Nonlinear Time Series Analysis

Author: Ruey S. Tsay

Publisher: John Wiley & Sons

Published: 2018-09-13

Total Pages: 516

ISBN-13: 1119264065

DOWNLOAD EBOOK

A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.


Nonlinear Time Series Analysis with R

Nonlinear Time Series Analysis with R

Author: Ray Huffaker

Publisher: Oxford University Press

Published: 2017-10-20

Total Pages: 312

ISBN-13: 0191085790

DOWNLOAD EBOOK

Nonlinear Time Series Analysis with R provides a practical guide to emerging empirical techniques allowing practitioners to diagnose whether highly fluctuating and random appearing data are most likely driven by random or deterministic dynamic forces. It joins the chorus of voices recommending 'getting to know your data' as an essential preliminary evidentiary step in modelling. Time series are often highly fluctuating with a random appearance. Observed volatility is commonly attributed to exogenous random shocks to stable real-world systems. However, breakthroughs in nonlinear dynamics raise another possibility: highly complex dynamics can emerge endogenously from astoundingly parsimonious deterministic nonlinear models. Nonlinear Time Series Analysis (NLTS) is a collection of empirical tools designed to aid practitioners detect whether stochastic or deterministic dynamics most likely drive observed complexity. Practitioners become 'data detectives' accumulating hard empirical evidence supporting their modelling approach. This book is targeted to professionals and graduate students in engineering and the biophysical and social sciences. Its major objectives are to help non-mathematicians — with limited knowledge of nonlinear dynamics — to become operational in NLTS; and in this way to pave the way for NLTS to be adopted in the conventional empirical toolbox and core coursework of the targeted disciplines. Consistent with modern trends in university instruction, the book makes readers active learners with hands-on computer experiments in R code directing them through NLTS methods and helping them understand the underlying logic (please see www.marco.bittelli.com). The computer code is explained in detail so that readers can adjust it for use in their own work. The book also provides readers with an explicit framework — condensed from sound empirical practices recommended in the literature — that details a step-by-step procedure for applying NLTS in real-world data diagnostics.


Nonlinear Time Series

Nonlinear Time Series

Author: Jianqing Fan

Publisher: Springer Science & Business Media

Published: 2008-09-11

Total Pages: 565

ISBN-13: 0387693955

DOWNLOAD EBOOK

This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.


Nonlinear Time Series Analysis of Economic and Financial Data

Nonlinear Time Series Analysis of Economic and Financial Data

Author: Philip Rothman

Publisher: Springer Science & Business Media

Published: 1999-01-31

Total Pages: 394

ISBN-13: 0792383796

DOWNLOAD EBOOK

Nonlinear Time Series Analysis of Economic and Financial Data provides an examination of the flourishing interest that has developed in this area over the past decade. The constant theme throughout this work is that standard linear time series tools leave unexamined and unexploited economically significant features in frequently used data sets. The book comprises original contributions written by specialists in the field, and offers a combination of both applied and methodological papers. It will be useful to both seasoned veterans of nonlinear time series analysis and those searching for an informative panoramic look at front-line developments in the area.


Nonlinear Time Series

Nonlinear Time Series

Author: Jiti Gao

Publisher: CRC Press

Published: 2007-03-22

Total Pages: 249

ISBN-13: 1420011219

DOWNLOAD EBOOK

Useful in the theoretical and empirical analysis of nonlinear time series data, semiparametric methods have received extensive attention in the economics and statistics communities over the past twenty years. Recent studies show that semiparametric methods and models may be applied to solve dimensionality reduction problems arising from using fully


Nonlinear Time Series Analysis

Nonlinear Time Series Analysis

Author: Holger Kantz

Publisher: Cambridge University Press

Published: 2004

Total Pages: 390

ISBN-13: 9780521529020

DOWNLOAD EBOOK

The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.


Topics In Nonlinear Time Series Analysis, With Implications For Eeg Analysis

Topics In Nonlinear Time Series Analysis, With Implications For Eeg Analysis

Author: Andreas Galka

Publisher: World Scientific

Published: 2000-02-18

Total Pages: 360

ISBN-13: 9814493929

DOWNLOAD EBOOK

This book provides a thorough review of a class of powerful algorithms for the numerical analysis of complex time series data which were obtained from dynamical systems. These algorithms are based on the concept of state space representations of the underlying dynamics, as introduced by nonlinear dynamics. In particular, current algorithms for state space reconstruction, correlation dimension estimation, testing for determinism and surrogate data testing are presented — algorithms which have been playing a central role in the investigation of deterministic chaos and related phenomena since 1980. Special emphasis is given to the much-disputed issue whether these algorithms can be successfully employed for the analysis of the human electroencephalogram.