Finite Volume Methods for Hyperbolic Problems

Finite Volume Methods for Hyperbolic Problems

Author: Randall J. LeVeque

Publisher: Cambridge University Press

Published: 2002-08-26

Total Pages: 582

ISBN-13: 1139434187

DOWNLOAD EBOOK

This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.


Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws

Author: LEVEQUE

Publisher: Birkhäuser

Published: 2013-11-11

Total Pages: 221

ISBN-13: 3034851162

DOWNLOAD EBOOK

These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.


Hyperbolic Problems: Theory, Numerics, Applications

Hyperbolic Problems: Theory, Numerics, Applications

Author: Sylvie Benzoni-Gavage

Publisher: Springer Science & Business Media

Published: 2008-01-12

Total Pages: 1117

ISBN-13: 3540757120

DOWNLOAD EBOOK

This volume contains papers that were presented at HYP2006, the eleventh international Conference on Hyperbolic Problems: Theory, Numerics and Applications. This biennial series of conferences has become one of the most important international events in Applied Mathematics. As computers became more and more powerful, the interplay between theory, modeling, and numerical algorithms gained considerable impact, and the scope of HYP conferences expanded accordingly.


One-dimensional Hyperbolic Conservation Laws And Their Applications

One-dimensional Hyperbolic Conservation Laws And Their Applications

Author: Jean-michel Coron

Publisher: World Scientific

Published: 2019-01-08

Total Pages: 395

ISBN-13: 9813276193

DOWNLOAD EBOOK

This book is a collection of lecture notes for the LIASFMA Shanghai Summer School on 'One-dimensional Hyperbolic Conservation Laws and Their Applications' which was held during August 16 to August 27, 2015 at Shanghai Jiao Tong University, Shanghai, China. This summer school is one of the activities promoted by Sino-French International Associate Laboratory in Applied Mathematics (LIASFMA in short). LIASFMA was established jointly by eight institutions in China and France in 2014, which is aimed at providing a platform for some of the leading French and Chinese mathematicians to conduct in-depth researches, extensive exchanges, and student training in the field of applied mathematics. This summer school has the privilege of being the first summer school of the newly established LIASFMA, which makes it significant.


Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws

Author: Jan S. Hesthaven

Publisher: SIAM

Published: 2018-01-30

Total Pages: 571

ISBN-13: 1611975107

DOWNLOAD EBOOK

Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.


Hyperbolic Systems of Conservation Laws

Hyperbolic Systems of Conservation Laws

Author: Philippe G. LeFloch

Publisher: Springer Science & Business Media

Published: 2002-07-01

Total Pages: 1010

ISBN-13: 9783764366872

DOWNLOAD EBOOK

This book examines the well-posedness theory for nonlinear hyperbolic systems of conservation laws, recently completed by the author together with his collaborators. It covers the existence, uniqueness, and continuous dependence of classical entropy solutions. It also introduces the reader to the developing theory of nonclassical (undercompressive) entropy solutions. The systems of partial differential equations under consideration arise in many areas of continuum physics.


Handbook of Numerical Methods for Hyperbolic Problems

Handbook of Numerical Methods for Hyperbolic Problems

Author: Remi Abgrall

Publisher: Elsevier

Published: 2017-01-16

Total Pages: 612

ISBN-13: 044463911X

DOWNLOAD EBOOK

Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or those involved in applications - Written by leading subject experts in each field, the volumes provide breadth and depth of content coverage


Front Tracking for Hyperbolic Conservation Laws

Front Tracking for Hyperbolic Conservation Laws

Author: Helge Holden

Publisher: Springer

Published: 2015-12-10

Total Pages: 521

ISBN-13: 3662475073

DOWNLOAD EBOOK

This is the second edition of a well-received book providing the fundamentals of the theory hyperbolic conservation laws. Several chapters have been rewritten, new material has been added, in particular, a chapter on space dependent flux functions and the detailed solution of the Riemann problem for the Euler equations. Hyperbolic conservation laws are central in the theory of nonlinear partial differential equations and in science and technology. The reader is given a self-contained presentation using front tracking, which is also a numerical method. The multidimensional scalar case and the case of systems on the line are treated in detail. A chapter on finite differences is included. From the reviews of the first edition: "It is already one of the few best digests on this topic. The present book is an excellent compromise between theory and practice. Students will appreciate the lively and accurate style." D. Serre, MathSciNet "I have read the book with great pleasure, and I can recommend it to experts as well as students. It can also be used for reliable and very exciting basis for a one-semester graduate course." S. Noelle, Book review, German Math. Soc. "Making it an ideal first book for the theory of nonlinear partial differential equations...an excellent reference for a graduate course on nonlinear conservation laws." M. Laforest, Comp. Phys. Comm.


Handbook of Numerical Methods for Hyperbolic Problems

Handbook of Numerical Methods for Hyperbolic Problems

Author: Remi Abgrall

Publisher: Elsevier

Published: 2016-11-17

Total Pages: 668

ISBN-13: 0444637958

DOWNLOAD EBOOK

Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Ideal for readers working on the theoretical aspects of algorithm development and its numerical analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or readers involved in applications - Written by leading subject experts in each field who provide breadth and depth of content coverage