Nonlinear Differential Equations of Monotone Types in Banach Spaces

Nonlinear Differential Equations of Monotone Types in Banach Spaces

Author: Viorel Barbu

Publisher: Springer Science & Business Media

Published: 2010-01-01

Total Pages: 283

ISBN-13: 1441955429

DOWNLOAD EBOOK

This monograph is concerned with the basic results on Cauchy problems associated with nonlinear monotone operators in Banach spaces with applications to partial differential equations of evolutive type. It focuses on major results in recent decades.


Nonlinear Semigroups and Differential Equations in Banach Spaces

Nonlinear Semigroups and Differential Equations in Banach Spaces

Author: Viorel Barbu

Publisher: Springer

Published: 1976-04-06

Total Pages: 380

ISBN-13:

DOWNLOAD EBOOK

This book is concerned with nonlinear semigroups of contractions in Banach spaces and their application to the existence theory for differential equa tions associated with nonlinear dissipative operators. The study of nonlinear semi groups resulted from the examination of nonlinear parabolic equations and from various nonlinear boundary value problems. The first work done by Y. Komura stimulated much further work and interest in this subject. Thus a series of studies was begun and then continued by T. Kato, M. G. Crandall, A. Pazy, H. Brezis and others, who made important con tributions to the development of the theory. The theory as developed below is a generalisation of the Hille-Yosida theory for one-parameter semigroups of linear operators and is a collection of diversified results unified more or less loosely by their methods of approach. This theory is also closely related to the theory of nonlinear monotone operators. Of course not all aspects of this theory could be covered in our expo sition, and many important contributions to the subject have been excluded for the sake of brevity. We have attempted to present the basic results to the reader and to orient him toward some of the applications. This book is intended to be self-contained. The reader is assumed to have only a basic knowledge of functional analysis, function theory and partial differential equations. Some of the necessary prerequisites for the reading of this 'book are summarized, with or without proof, in Chapter I.


Differential Equations in Banach Spaces

Differential Equations in Banach Spaces

Author: Giovanni Dore

Publisher: CRC Press

Published: 1993-08-05

Total Pages: 290

ISBN-13: 9780824790677

DOWNLOAD EBOOK

This reference - based on the Conference on Differential Equations, held in Bologna - provides information on current research in parabolic and hyperbolic differential equations. Presenting methods and results in semigroup theory and their applications to evolution equations, this book focuses on topics including: abstract parabolic and hyperbolic linear differential equations; nonlinear abstract parabolic equations; holomorphic semigroups; and Volterra operator integral equations.;With contributions from international experts, Differential Equations in Banach Spaces is intended for research mathematicians in functional analysis, partial differential equations, operator theory and control theory; and students in these disciplines.


Semigroup Approach To Nonlinear Diffusion Equations

Semigroup Approach To Nonlinear Diffusion Equations

Author: Viorel Barbu

Publisher: World Scientific

Published: 2021-09-23

Total Pages: 221

ISBN-13: 981124653X

DOWNLOAD EBOOK

This book is concerned with functional methods (nonlinear semigroups of contractions, nonlinear m-accretive operators and variational techniques) in the theory of nonlinear partial differential equations of elliptic and parabolic type. In particular, applications to the existence theory of nonlinear parabolic equations, nonlinear Fokker-Planck equations, phase transition and free boundary problems are presented in details. Emphasis is put on functional methods in partial differential equations (PDE) and less on specific results.


Monotone Operators in Banach Space and Nonlinear Partial Differential Equations

Monotone Operators in Banach Space and Nonlinear Partial Differential Equations

Author: R. E. Showalter

Publisher: American Mathematical Soc.

Published: 2013-02-22

Total Pages: 296

ISBN-13: 0821893971

DOWNLOAD EBOOK

The objectives of this monograph are to present some topics from the theory of monotone operators and nonlinear semigroup theory which are directly applicable to the existence and uniqueness theory of initial-boundary-value problems for partial differential equations and to construct such operators as realizations of those problems in appropriate function spaces. A highlight of this presentation is the large number and variety of examples introduced to illustrate the connection between the theory of nonlinear operators and partial differential equations. These include primarily semilinear or quasilinear equations of elliptic or of parabolic type, degenerate cases with change of type, related systems and variational inequalities, and spatial boundary conditions of the usual Dirichlet, Neumann, Robin or dynamic type. The discussions of evolution equations include the usual initial-value problems as well as periodic or more general nonlocal constraints, history-value problems, those which may change type due to a possibly vanishing coefficient of the time derivative, and other implicit evolution equations or systems including hysteresis models. The scalar conservation law and semilinear wave equations are briefly mentioned, and hyperbolic systems arising from vibrations of elastic-plastic rods are developed. The origins of a representative sample of such problems are given in the appendix.


Evolution Equations and Approximations

Evolution Equations and Approximations

Author: Kazufumi Ito

Publisher: World Scientific

Published: 2002

Total Pages: 524

ISBN-13: 9789812380265

DOWNLOAD EBOOK

Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR


Problems in Non-Linear Analysis

Problems in Non-Linear Analysis

Author: G. Prodi

Publisher: Springer Science & Business Media

Published: 2011-06-01

Total Pages: 580

ISBN-13: 3642109985

DOWNLOAD EBOOK

H. Brezis: Propriétés régularisantes de certains semigroupes et applications.- F. Browder: Normal solvability and existence theorems for nonlinear mappings in Banach spaces.- F. Browder: Normal solvability for nonlinear mappings and the geometry of Banach spaces.- J. Eells, K.D. Elworthy: Wiener integration on certain manifolds.- W.H. Fleming: Nonlinear partial differential equations - Probabilistic and game theoretic methods.- C. Foias: Solutions statistiques des équations d’évolution non linéaires.- J.L. Lions: Quelques problèmes de la théorie des équations non linéaires d’évolution.- A. Pazy: Semi-groups of nonlinear contractions in Hilbert space.- R. Temam: Equations aux dérivées partielles stochastiques.- M.M. Vainberg: Le problème de la minimisation des fonctionnelles non linéaires.


Analytic Semigroups and Optimal Regularity in Parabolic Problems

Analytic Semigroups and Optimal Regularity in Parabolic Problems

Author: Alessandra Lunardi

Publisher: Springer Science & Business Media

Published: 2012-12-13

Total Pages: 437

ISBN-13: 3034805578

DOWNLOAD EBOOK

The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in parabolic partial differential equations and systems. It gives a comprehensive overview on the present state of the art in the field, teaching at the same time how to exploit its basic techniques. - - - This very interesting book provides a systematic treatment of the basic theory of analytic semigroups and abstract parabolic equations in general Banach spaces, and how this theory may be used in the study of parabolic partial differential equations; it takes into account the developments of the theory during the last fifteen years. (...) For instance, optimal regularity results are a typical feature of abstract parabolic equations; they are comprehensively studied in this book, and yield new and old regularity results for parabolic partial differential equations and systems. (Mathematical Reviews) Motivated by applications to fully nonlinear problems the approach is focused on classical solutions with continuous or Hölder continuous derivatives. (Zentralblatt MATH)


Evolution Equations

Evolution Equations

Author: Gisele Ruiz Goldstein

Publisher: CRC Press

Published: 2003-06-24

Total Pages: 442

ISBN-13: 9780824709754

DOWNLOAD EBOOK

Celebrating the work of renowned mathematician Jerome A. Goldstein, this reference compiles original research on the theory and application of evolution equations to stochastics, physics, engineering, biology, and finance. The text explores a wide range of topics in linear and nonlinear semigroup theory, operator theory, functional analysis, and linear and nonlinear partial differential equations, and studies the latest theoretical developments and uses of evolution equations in a variety of disciplines. Providing nearly 500 references, the book contains discussions by renowned mathematicians such as H. Brezis, G. Da Prato, N.E. Gretskij, I. Lasiecka, Peter Lax, M. M. Rao, and R. Triggiani.