Waves and Oscillations in Plasmas

Waves and Oscillations in Plasmas

Author: Hans L. Pecseli

Publisher: CRC Press

Published: 2020-05-05

Total Pages: 555

ISBN-13: 0429953518

DOWNLOAD EBOOK

Waves and Oscillations in Plasmas addresses central issues in modern plasma sciences, within the context of general classical physics. The book is working gradually from an introductory to an advanced level. Addressing central issues in modern plasma sciences, including linear and nonlinear wave phenomena, this second edition has been fully updated and includes the latest developments in relevant fluid models as well as kinetic plasma models, including a detailed discussion of, for instance, collisionless Landau damping, linear as well as non-linear. The book is the result of many years of lecturing plasma sciences in Norway, Denmark, Germany, and also at the Unites States of America. Offering a clear separation of linear and nonlinear models, the book can be tailored for students of varying levels of expertise in plasma physics, in addition to areas as diverse as the space sciences, laboratory experiments, plasma processing, and more. Features: Presents a simple physical interpretation of basic problems is presented where possible Supplies a complete summary of classical papers and textbooks placed in the proper context Includes worked examples, exercises, and problems with general applicability


The Frequency of Nonlinear Plasma Oscillations

The Frequency of Nonlinear Plasma Oscillations

Author: H. Derfler

Publisher:

Published: 1961

Total Pages: 28

ISBN-13:

DOWNLOAD EBOOK

The frequency of plane standing waves of electrons moving through a background of infinitely heavy ions is strictly independent of amplitue as long as the electron velocity is a unique function of position. This result is contrary to those presented in recent publications by S. Amer, J. Electronics and Control, 5:105-13, 158 and L. Gold, J. Electronics and Control, 6:548-549, 1959. The frequencies of spherical and cylindicl plsma oscillations, however, do depend upon the amplitude of the oscillation. AsA RESULT, ANY PHASE RELATIONSHIP BETWEEN ELECTRONS EVENTUALLY WILL BE DESTROYED AND THE ELECTRON VELOCIY BECOMES MULTIVALUED. Therefore steady free oscillations do not persist even in a cold plasma. (Author).


Methods in Nonlinear Plasma Theory

Methods in Nonlinear Plasma Theory

Author: Ronald Davidson

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 377

ISBN-13: 0323153380

DOWNLOAD EBOOK

Methods in Nonlinear Plasma Theory is from lectures given in graduate classes in both University of Maryland and University of California at Berkeley. To be able to understand fully the contents in this book, the reader is assumed to be a graduate student with background of classical physics and linear plasma waves and instabilities. This text is divided into two major parts. Part I deals with the coherent nonlinear phenomena, while Part II discusses the turbulent nonlinear phenomena. Six chapters comprise Part I, where basic equations and methods are described and discussed. Some of these methods are Vlasov-Maxwell equations and Korteweg-de Vries equation. Part II meanwhile has eight chapters that discuss frameworks and theories for weak plasma turbulence. Specifically, the weak turbulence theory is presented as it is applied to electromagnetic wave-particle interactions, nonlinear wave-wave interactions, and nonlinear wave-particle interactions. This book is a useful reference for students and researchers in the study of classical physics and plasma theory.


The Nonlinear Schrödinger Equation

The Nonlinear Schrödinger Equation

Author: Catherine Sulem

Publisher: Springer Science & Business Media

Published: 2007-06-30

Total Pages: 363

ISBN-13: 0387227687

DOWNLOAD EBOOK

Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.


Fluctuations and Non-Linear Wave Interactions in Plasmas

Fluctuations and Non-Linear Wave Interactions in Plasmas

Author: A. G. Sitenko

Publisher: Elsevier

Published: 2016-09-20

Total Pages: 279

ISBN-13: 1483189392

DOWNLOAD EBOOK

Fluctuations and Non-linear Wave Interactions in Plasmas talks about a theory of fluctuations in a homogenous plasma. The title takes into consideration non-linear wave interactions. The text first presents the statistical description of plasma, and then proceeds to covering non-linear electrodynamic equations. Next, the selection deals with the electrodynamic properties of magento-active plasma and waves in plasma. The text also tackles non-linear wave interactions, along with fluctuations in plasmas. The next chapter talks about the effect of non-linear wave interaction on fluctuations in a plasma. Chapter 8 details fluctuation-dissipation theorem, while Chapter 9 discusses kinetic equations. The tenth chapter covers the scattering and radiation of waves and the last chapter tackles wave interaction in semi-bounded plasma. The book will be of great use to scientists and professionals who deals with plasmas.


Dynamical Systems and Nonlinear Waves in Plasmas

Dynamical Systems and Nonlinear Waves in Plasmas

Author: Santo Banerjee

Publisher: CRC Press

Published: 2021-09-10

Total Pages: 218

ISBN-13: 1000404757

DOWNLOAD EBOOK

Dynamical systems and Nonlinear Waves in Plasmas is written in a clear and comprehensible style to serve as a compact volume for advanced postgraduate students and researchers working in the areas of Applied Physics, Applied Mathematics, Dynamical Systems, Nonlinear waves in Plasmas or other nonlinear media. It provides an introduction to the background of dynamical systems, waves, oscillations and plasmas. Basic concepts of dynamical systems and phase plane analysis for the study of dynamical properties of nonlinear waves in plasmas are presented. Different kinds of waves in plasmas are introduced. Reductive perturbative technique and its applications to derive different kinds of nonlinear evolution equations in plasmas are discussed. Analytical wave solutions of these nonlinear evolution equations are presented using the concept of bifurcation theory of planar dynamical systems in a very simple way. Bifurcations of both small and arbitrary amplitudes of various nonlinear acoustic waves in plasmas are presented using phase plots and time-series plots. Super nonlinear waves and its bifurcation behaviour are discussed for various plasma systems. Multiperiodic, quasiperiodic and chaotic motions of nonlinear plasma waves are discussed in presence of external periodic force. Multistability of plasma waves is investigated. Stable oscillation of plasma waves is also presented in dissipative plasmas. The book is meant for undergraduate and postgraduate students studying plasma physics. It will also serve a reference to the researchers, scientists and faculties to pursue the dynamics of nonlinear waves and its properties in plasmas. It describes the concept of dynamical systems and is useful in understanding exciting features, such as solitary wave, periodic wave, supernonlinear wave, chaotic, quasiperiodic and coexisting structures of nonlinear waves in plasmas. The concepts and approaches, discussed in the book, will also help the students and professionals to study such features in other nonlinear media.


Introduction to Plasma Physics and Controlled Fusion

Introduction to Plasma Physics and Controlled Fusion

Author: Francis F. Chen

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 427

ISBN-13: 1475755953

DOWNLOAD EBOOK

TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.


Nonlinear Waves

Nonlinear Waves

Author: Lokenath Debnath

Publisher: CUP Archive

Published: 1983-12-30

Total Pages: 376

ISBN-13: 9780521254687

DOWNLOAD EBOOK

The outcome of a conference held in East Carolina University in June 1982, this book provides an account of developments in the theory and application of nonlinear waves in both fluids and plasmas. Twenty-two contributors from eight countries here cover all the main fields of research, including nonlinear water waves, K-dV equations, solitions and inverse scattering transforms, stability of solitary waves, resonant wave interactions, nonlinear evolution equations, nonlinear wave phenomena in plasmas, recurrence phenomena in nonlinear wave systems, and the structure and dynamics of envelope solitions in plasmas.