Non-linear, or chaotic behaviour in real world systems has been reported in electronic circuits and communications systems, chemical reactions, biological behaviour. Applications include solitons, integrable systems, cellular automata, pattern formation, qualitative structure and bifurcation theory, onset of chaos and turbulence, analytic dynamics, and transport phenomena. This book presents important new research in this dynamic field.
Attractors, Bifurcations, & Chaos - now in its second edition - begins with an introduction to mathematical methods in modern nonlinear dynamics and deals with differential equations. Phenomena such as bifurcations and deterministic chaos are given considerable emphasis, both in the methodological part, and in the second part, containing various applications in economics and in regional science. Coexistence of attractors and the multiplicity of development paths in nonlinear systems are central topics. The applications focus on issues such as business cycles, oligopoly, interregional trade dynamics, and economic development theory.
This book, written by experts in the fields of atomic physics and nonlinear science, covers the important developments in a special aspect of Bose-Einstein condensation, namely nonlinear phenomena in condensates. Topics covered include bright, dark, gap and multidimensional solitons; vortices; vortex lattices; optical lattices; multicomponent condensates; mathematical methods/rigorous results; and the beyond-the-mean-field approach.
The dynamics of physical, chemical, biological, or fluid systems generally must be described by nonlinear models, whose detailed mathematical solutions are not obtainable. To understand some aspects of such dynamics, various complementary methods and viewpoints are of crucial importance. In this book the perspectives generated by analytical, topological and computational methods, and interplays between them, are developed in a variety of contexts. This book is a comprehensive introduction to this field, suited to a broad readership, and reflecting a wide range of applications. Some of the concepts considered are: topological equivalence; embeddings; dimensions and fractals; Poincaré maps and map-dynamics; empirical computational sciences vis-á-vis mathematics; Ulam's synergetics; Turing's instability and dissipative structures; chaos; dynamic entropies; Lorenz and Rossler models; predator-prey and replicator models; FPU and KAM phenomena; solitons and nonsolitons; coupled maps and pattern dynamics; cellular automata.
Chaos, catastrophe, self-organization, and complexity theories (nonlinear dynamics) now have practical and measurable roles in the functioning of work organizations. Managing Emergent Phenomena begins by describing how the concept of an organization has changed from a bureaucracy, to a humanistic and organic system, to a complex adaptive system. The dynamics concepts are then explained along with the most recent research methods for analyzing real data. Applications include: work motivation, personnel selection and turnover, creative thinking by individuals and groups, the development of social networks, coordination in work groups, the emergence of leaders, work performance in organizational hierarchies, economic problems that are relevant to organizations, techniques for predicting the future, and emergency management. Each application begins with a tight summary of standard thinking on a subject, followed by the new insights that are afforded by nonlinear dynamics and the empirical data supporting those ideas. Unusual concepts are also encountered, such as the organizational unconscious, collective intelligence, and the revolt of the slaved variables. The net results are a new perspective on what is really important in organizational life, original insights on familiar experiences, and some clear signposts for the next generation of nonlinear social scientists.
This exceptional book is concerned with the application of fractals and chaos, as well as other concepts from nonlinear dynamics to biomedical phenomena. Herein we seek to communicate the excitement being experienced by scientists upon making application of these concepts within the life sciences. Mathematical concepts are introduced using biomedical data sets and the phenomena being explained take precedence over the mathematics. In this new edition what has withstood the test of time has been updated and modernized; speculations that were not borne out have been expunged and the breakthroughs that have occurred in the intervening years are emphasized. The book provides a comprehensive overview of a nascent theory of medicine, including a new chapter on the theory of complex networks as they pertain to medicine.
Clear, integrated coverage of all aspects of nonlinear optics—phenomena, materials, and devices Coauthored by George Stegeman, one of the most highly respected pioneers of nonlinear optics—with contributions on applications from Robert Stegeman—this book covers nonlinear optics from a combined physics, optics, materials science, and devices perspective. It offers a thoroughly balanced treatment of concepts, nonlinear materials, practical aspects of nonlinear devices, and current application areas. Beginning with the presentation of a simple electron on a spring model—to help readers make the leap from concepts to applications—Nonlinear Optics gives comprehensive explanations of second-order phenomena, derivation of nonlinear susceptibilities, third-order nonlinear effects, multi-wave mixing, scattering, and more. Coverage includes: Nonlinear response of materials at the molecular level Second-order nonlinear devices, their optimization and limitations The physical origins of second- and third-order nonlinearities Typical frequency dispersion of nonlinearities, explained in terms of simple two- and three-level models Ultrafast and ultrahigh intensity processes Practice problems demonstrating the design of such nonlinear devices as frequency doublers and optical oscillators Based on more than twenty years of lectures at the College of Optics and Photonics (CREOL) at the University of Central Florida, Nonlinear Optics introduces all topics from the ground up, making the material easily accessible not only for physicists, but also for chemists and materials scientists, as well as professionals in diverse areas of optics, from laser physics to electrical engineering.
Since the 3rd edition appeared, a fast evolution of the field has occurred. The fourth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers. The contents include such important topics as self- and cross-phase modulation, stimulated Raman and Brillouin scattering, four-wave mixing, modulation instability, and optical solitons. Many new figures have been added to help illustrate the concepts discussed in the book. New to this edition are chapters on highly nonlinear fibers and and the novel nonlinear effects that have been observed in these fibers since 2000. Such a chapter should be of interest to people in the field of new wavelengths generation, which has potential application in medical diagnosis and treatments, spectroscopy, new wavelength lasers and light sources, etc. Continues to be industry bestseller providing unique source of comprehensive coverage on the subject of nonlinear fiber optics Fourth Edition is a completely up-to-date treatment of the nonlinear phenomena occurring inside optical fibers Includes 2 NEW CHAPTERS on the properties of highly nonlinear fibers and their novel nonlinear effects
Increasing interest in the study of coordinated activity of brain cell ensembles reflects the current conceptualization of brain information processing and cognition. It is thought that cognitive processes involve not only serial stages of sensory signal processing, but also massive parallel information processing circuitries, and therefore it is the coordinated activity of neuronal networks of brains that give rise to cognition and consciousness in general. While the concepts and techniques to measure synchronization are relatively well characterized and developed in the mathematics and physics community, the measurement of coordinated activity derived from brain signals is not a trivial task, and is currently a subject of debate. Coordinated Activity in the Brain: Measurements and Relevance to Brain Function and Behavior addresses conceptual and methodological limitations, as well as advantages, in the assessment of cellular coordinated activity from neurophysiological recordings. The book offers a broad overview of the field for investigators working in a variety of disciplines (neuroscience, biophysics, mathematics, physics, neurology, neurosurgery, psychology, biomedical engineering, computer science/computational biology), and introduces future trends for understanding brain activity and its relation to cognition and pathologies. This work will be valuable to professional investigators and clinicians, graduate and post-graduate students in related fields of neuroscience and biophysics, and to anyone interested in signal analysis techniques for studying brain function.
Centered around the natural phenomena of relaxations and fluctuations, this monograph provides readers with a solid foundation in the linear and nonlinear Fokker-Planck equations that describe the evolution of distribution functions. It emphasizes principles and notions of the theory (e.g. self-organization, stochastic feedback, free energy, and Markov processes), while also illustrating the wide applicability (e.g. collective behavior, multistability, front dynamics, and quantum particle distribution). The focus is on relaxation processes in homogeneous many-body systems describable by nonlinear Fokker-Planck equations. Also treated are Langevin equations and correlation functions. Since these phenomena are exhibited by a diverse spectrum of systems, examples and applications span the fields of physics, biology and neurophysics, mathematics, psychology, and biomechanics.