Nonlinear Optimization of Vehicle Safety Structures

Nonlinear Optimization of Vehicle Safety Structures

Author: Jesper Christensen

Publisher: Butterworth-Heinemann

Published: 2015-12-07

Total Pages: 488

ISBN-13: 0124173098

DOWNLOAD EBOOK

Nonlinear Optimization of Vehicle Safety Structures: Modeling of Structures Subjected to Large Deformations provides a cutting-edge overview of the latest optimization methods for vehicle structural design. The book focuses on large deformation structural optimization algorithms and applications, covering the basic principles of modern day topology optimization and comparing the benefits and flaws of different algorithms in use. The complications of non-linear optimization are highlighted, along with the shortcomings of recently proposed algorithms. Using industry relevant case studies, users will how optimization software can be used to address challenging vehicle safety structure problems and how to explore the limitations of the approaches given. The authors draw on research work with the likes of MIRA, Jaguar Land Rover and Tata Motors European Technology Centre as part of multi-million pound European funded research projects, emphasizing the industry applications of recent advances. The book is intended for crash engineers, restraints system engineers and vehicle dynamics engineers, as well as other mechanical, automotive and aerospace engineers, researchers and students with a structural focus. - Focuses on non-linear, large deformation structural optimization problems relating to vehicle safety - Discusses the limitations of different algorithms in use and offers guidance on best practice approaches through the use of relevant case studies - Author's present research from the cutting-edge of the industry, including research from leading European automotive companies and organizations - Uses industry relevant case studies, allowing users to understand how optimization software can be used to address challenging vehicle safety structure problems and how to explore the limitations of the approaches given


Autonomous Vehicle

Autonomous Vehicle

Author: Andrzej Zak

Publisher: BoD – Books on Demand

Published: 2016-09-07

Total Pages: 158

ISBN-13: 9535125842

DOWNLOAD EBOOK

Autonomous vehicles, despite their relatively short history, have already found practical application in many areas of human activity. Such vehicles are usually replacing people in performing tasks that require long operating time and are held in inaccessible or hazardous environments. Nevertheless, autonomous robotics is probably the area that is being developed the most because of the great demand for such devices in different areas of our lives. This book is a collection of experiences shared by scientists from different parts of the world doing researches and daily exploiting autonomous systems. Giving this book in the hands of the reader, we hope that it will be a treasure trove of knowledge and inspiration for further research in the field of autonomous vehicles.


Gas Allocation Optimization Methods in Artificial Gas Lift

Gas Allocation Optimization Methods in Artificial Gas Lift

Author: Ehsan Khamehchi

Publisher: Springer

Published: 2016-12-31

Total Pages: 55

ISBN-13: 3319514512

DOWNLOAD EBOOK

This Brief offers a comprehensive study covering the different aspects of gas allocation optimization in petroleum engineering. It contains different methods of defining the fitness function, dealing with constraints and selecting the optimizer; in each chapter a detailed literature review is included which covers older and important studies as well as recent publications. This book will be of use for production engineers and students interested in gas lift optimization.


Security and Privacy in New Computing Environments

Security and Privacy in New Computing Environments

Author: Jin Li

Publisher: Springer

Published: 2019-06-07

Total Pages: 751

ISBN-13: 3030213730

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 2nd EAI International Conference on Security and Privacy in New Computing Environments, SPNCE 2019, held in Tianjin, China, in April 2019. The 62 full papers were selected from 112 submissions and are grouped into topics on privacy and security analysis, Internet of Things and cloud computing, system building, scheme, model and application for data, mechanism and method in new computing.


Artificial Cognitive Architecture with Self-Learning and Self-Optimization Capabilities

Artificial Cognitive Architecture with Self-Learning and Self-Optimization Capabilities

Author: Gerardo Beruvides

Publisher: Springer

Published: 2018-12-14

Total Pages: 216

ISBN-13: 3030039498

DOWNLOAD EBOOK

This book introduces three key issues: (i) development of a gradient-free method to enable multi-objective self-optimization; (ii) development of a reinforcement learning strategy to carry out self-learning and finally, (iii) experimental evaluation and validation in two micromachining processes (i.e., micro-milling and micro-drilling). The computational architecture (modular, network and reconfigurable for real-time monitoring and control) takes into account the analysis of different types of sensors, processing strategies and methodologies for extracting behavior patterns from representative process’ signals. The reconfiguration capability and portability of this architecture are supported by two major levels: the cognitive level (core) and the executive level (direct data exchange with the process). At the same time, the architecture includes different operating modes that interact with the process to be monitored and/or controlled. The cognitive level includes three fundamental modes such as modeling, optimization and learning, which are necessary for decision-making (in the form of control signals) and for the real-time experimental characterization of complex processes. In the specific case of the micromachining processes, a series of models based on linear regression, nonlinear regression and artificial intelligence techniques were obtained. On the other hand, the executive level has a constant interaction with the process to be monitored and/or controlled. This level receives the configuration and parameterization from the cognitive level to perform the desired monitoring and control tasks.


International Conference on Statistics and Analytical Methods in Automotive Engineering

International Conference on Statistics and Analytical Methods in Automotive Engineering

Author: IMechE (Institution of Mechanical Engineers)

Publisher: John Wiley & Sons

Published: 2002-11-22

Total Pages: 292

ISBN-13: 9781860583872

DOWNLOAD EBOOK

These IMechE conference transactions examine how major improvements have been made in product delivery processes by the effective use of both statistical and analytical methods, as well as examining the problems that can occur as a result of under utilization of information. This volume will be of great interest to managers, engineers, and statisticians at all levels, engaged in project management or the design and development of motor vehicles, their subsystems, and components. CONTENTS INCLUDE Applications of advanced modelling methods in engine development Application of adaptive online DoE techniques for engine ECU calibration Radial basis functions for engine modelling Designing for Six Sigma reliability Dimensional variation analysis for automotive hybrid aluminium body structures Reliability-based multidisciplinary design optimization of vehicle structures


Computational Dynamics in Multibody Systems

Computational Dynamics in Multibody Systems

Author: Manuel F.O. Seabra Pereira

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 314

ISBN-13: 9401711100

DOWNLOAD EBOOK

This volume contains the edited version of selected papers presented at the Nato Advanced Study Institute on "Computer Aided Analysis of Rigid and Flexible Mechanical Systems", held in Portugal, from the 27 June to 9 July, 1994. The present volume can be viewed as a natural extension of the material addressed in the Institute which was published by KLUWER in the NATO ASI Series, Vol. 268, in 1994. The requirements for accurate and efficient analysis tools for design of large and lightweight mechanical systems has driven a strong interest in the challenging problem of multibody dynamics. The development of new analysis and design formulations for multi body systems has been more recently motivated with the need to include general features such as: real-time simulation capabilities, active control of machine flexibilities and advanced numerical methods related to time integration of the dynamic systems equations. In addition to the presentation of some basic formulations and methodologies in dynamics of multibody systems, including computational aspects, major applications of developments to date are presented herein. The scope of applications is extended to vehicle dynamics, aerospace technology, robotics, mechanisms design, intermittent motion and crashworthiness analysis. Several of these applications are explored by many contributors with a constant objective to pace development and improve the dynamic performance of mechanical systems avoiding different mechanical limitations and difficult functional requirements, such as, for example, accurate positioning of manipulators.