Nonlinear Optical Transmission Processes and Organic Photorefractive Materials
Author: Christopher M. Lawson
Publisher: SPIE-International Society for Optical Engineering
Published: 2002
Total Pages: 244
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Christopher M. Lawson
Publisher: SPIE-International Society for Optical Engineering
Published: 2002
Total Pages: 244
ISBN-13:
DOWNLOAD EBOOKAuthor: Oksana Ostroverkhova
Publisher: Elsevier
Published: 2013-08-31
Total Pages: 832
ISBN-13: 0857098764
DOWNLOAD EBOOKSmall molecules and conjugated polymers, the two main types of organic materials used for optoelectronic and photonic devices, can be used in a number of applications including organic light-emitting diodes, photovoltaic devices, photorefractive devices and waveguides. Organic materials are attractive due to their low cost, the possibility of their deposition from solution onto large-area substrates, and the ability to tailor their properties. The Handbook of organic materials for optical and (opto)electronic devices provides an overview of the properties of organic optoelectronic and nonlinear optical materials, and explains how these materials can be used across a range of applications.Parts one and two explore the materials used for organic optoelectronics and nonlinear optics, their properties, and methods of their characterization illustrated by physical studies. Part three moves on to discuss the applications of optoelectronic and nonlinear optical organic materials in devices and includes chapters on organic solar cells, electronic memory devices, and electronic chemical sensors, electro-optic devices.The Handbook of organic materials for optical and (opto)electronic devices is a technical resource for physicists, chemists, electrical engineers and materials scientists involved in research and development of organic semiconductor and nonlinear optical materials and devices. - Comprehensively examines the properties of organic optoelectronic and nonlinear optical materials - Discusses their applications in different devices including solar cells, LEDs and electronic memory devices - An essential technical resource for physicists, chemists, electrical engineers and materials scientists
Author: Ch. Bosshard
Publisher: CRC Press
Published: 2001-08-24
Total Pages: 268
ISBN-13: 9782884490078
DOWNLOAD EBOOKOrganic Nonlinear Optical Materials provides an extensive description of the preparation and characterization of organic materials for applications in nonlinear and electro-optics. The book discusses the fundamental optimization and practical limitations of a number of figures of merit for various optical parameters and gives a clinical appraisal of the potential of organic materials for applicators in optical technology. Among the topics addressed are the basic molecular design of ;nonlinear optical chromophores, fundamentals and novel techniques of organic crystal growth, preparation and characterization of Langmuir-Blodgett and polymer films, experimental methods for determining microscopic and macroscopic optical properties. Also included is a discussion of first results of the photorefractive effect in organic crystals and the potential of organics for photorefractive applications, as well as an extensive review of published linear and nonlinear optical measurement of organic materials.
Author: Jerome V. Moloney
Publisher: Springer Science & Business Media
Published: 1998-08-13
Total Pages: 270
ISBN-13: 9780387985817
DOWNLOAD EBOOKMathematical methods play a significant role in the rapidly growing field of nonlinear optical materials. This volume discusses a number of successful or promising contributions. The overall theme of this volume is twofold: (1) the challenges faced in computing and optimizing nonlinear optical material properties; and (2) the exploitation of these properties in important areas of application. These include the design of optical amplifiers and lasers, as well as novel optical switches. Research topics in this volume include how to exploit the magnetooptic effect, how to work with the nonlinear optical response of materials, how to predict laser-induced breakdown in efficient optical devices, and how to handle electron cloud distortion in femtosecond processes.
Author: Ch. Bosshard
Publisher: CRC Press
Published: 2020-04-23
Total Pages: 256
ISBN-13: 1420022636
DOWNLOAD EBOOKOrganic Nonlinear Optical Materials provides an extensive description of the preparation and characterization of organic materials for applications in nonlinear and electro-optics. The book discusses the fundamental optimization and practical limitations of a number of figures of merit for various optical parameters and gives a clinical appraisal o
Author: Peter Günter
Publisher: Springer
Published: 2012-12-06
Total Pages: 550
ISBN-13: 3540497137
DOWNLOAD EBOOKDescribing progress achieved in the field of nonlinear optics and nonlinear optical materials, the Handbook treats selected topics such as photorefractive materials, third-order nonlinear optical materials and organic nonlinear optical crystals, as well as electro-optic polymers. Applications of photorefractive materials in optical memories, optical processing, and guided-wave nonlinear optics in hotorefractive waveguides are described. As light will play a more and more dominant role as an information carrier, the review of existing and new materials given here makes this a keystone book in the field.
Author: Larry R. Dalton
Publisher: Cambridge University Press
Published: 2015-07-30
Total Pages: 305
ISBN-13: 0521449650
DOWNLOAD EBOOKDefinitive guide to modern organic electro-optic and photonic technologies, from basic theoretical concepts to practical applications in devices and systems.
Author: Joseph H. Simmons
Publisher: Academic Press
Published: 2000
Total Pages: 416
ISBN-13: 9780126441406
DOWNLOAD EBOOKOptical Materials presents, in a unified form, the underlying physical and structural processes that determine the optical behavior of materials. It does this by combining elements from physics, optics, and materials science in a seamless manner, and introducing quantum mechanics when needed. The book groups the characteristics of optical materials into classes with similar behavior. In treating each type of material, the text pays particular attention to atomic composition and chemical makeup, electronic states and band structure, and physical microstructure so that the reader will gain insight into the kinds of materials engineering and processing conditions that are required to produce a material exhibiting a desired optical property. The physical principles are presented on many levels, including a physical explanation, followed by formal mathematical support and examples and methods of measurement. The reader may overlook the equations with no loss of comprehension, or may use the text to find appropriate equations for calculations of optical properties. Presents the optical properties of metals, insulators, semiconductors, laser materials, and non-linear materials Physical processes are discussed and quantified using precise mathematical treatment, followed by examples and a discussion of measurement methods Authors combine many years of expertise in condensed matter physics, classical and quantum optics, and materials science The text is written on many levels and will benefit the novice as well as the expert Explains the concept of color in materials Explains the non-linear optical behavior of materials in a unified form Appendices present rigorous derivations
Author: Shizuhuo Yin
Publisher: Academic Press
Published: 2000
Total Pages: 593
ISBN-13: 0127748105
DOWNLOAD EBOOK"This text covers the fundamental aspects and the recent advances of photorefractive optics. There is a market potential for developing photorefractive (PR) optic devices for the needs of informational infrastructures. Photorefractive Optics provides an intensive background and details state-of-the-art technological applications for these needs. The book is a reference text for technical staff, research scientists, and graduate students who are working in the field."--BOOK JACKET
Author: Pierre-Alexandre Blanche
Publisher: Springer
Published: 2016-06-10
Total Pages: 325
ISBN-13: 3319293346
DOWNLOAD EBOOKThis book provides comprehensive, state-of-the art coverage of photorefractive organic compounds, a class of material with the ability to change their index of refraction upon illumination. The change is both dynamic and reversible. Dynamic because no external processing is required for the index modulation to be revealed, and reversible because the index change can be modified or suppressed by altering the illumination pattern. These properties make photorefractive materials very attractive candidates for many applications such as image restoration, correlation, beam conjugation, non-destructive testing, data storage, imaging through scattering media, holographic imaging and display. The field of photorefractive organic material is also closely related to organic photovoltaic and light emitting diode (OLED), which makes new discoveries in one field applicable to others.