Monotone Operators in Banach Space and Nonlinear Partial Differential Equations

Monotone Operators in Banach Space and Nonlinear Partial Differential Equations

Author: R. E. Showalter

Publisher: American Mathematical Soc.

Published: 2013-02-22

Total Pages: 296

ISBN-13: 0821893971

DOWNLOAD EBOOK

The objectives of this monograph are to present some topics from the theory of monotone operators and nonlinear semigroup theory which are directly applicable to the existence and uniqueness theory of initial-boundary-value problems for partial differential equations and to construct such operators as realizations of those problems in appropriate function spaces. A highlight of this presentation is the large number and variety of examples introduced to illustrate the connection between the theory of nonlinear operators and partial differential equations. These include primarily semilinear or quasilinear equations of elliptic or of parabolic type, degenerate cases with change of type, related systems and variational inequalities, and spatial boundary conditions of the usual Dirichlet, Neumann, Robin or dynamic type. The discussions of evolution equations include the usual initial-value problems as well as periodic or more general nonlocal constraints, history-value problems, those which may change type due to a possibly vanishing coefficient of the time derivative, and other implicit evolution equations or systems including hysteresis models. The scalar conservation law and semilinear wave equations are briefly mentioned, and hyperbolic systems arising from vibrations of elastic-plastic rods are developed. The origins of a representative sample of such problems are given in the appendix.


Nonlinear Differential Equations of Monotone Types in Banach Spaces

Nonlinear Differential Equations of Monotone Types in Banach Spaces

Author: Viorel Barbu

Publisher: Springer Science & Business Media

Published: 2010-01-01

Total Pages: 283

ISBN-13: 1441955429

DOWNLOAD EBOOK

This monograph is concerned with the basic results on Cauchy problems associated with nonlinear monotone operators in Banach spaces with applications to partial differential equations of evolutive type. It focuses on major results in recent decades.


Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems

Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems

Author: I. Cioranescu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 274

ISBN-13: 9400921217

DOWNLOAD EBOOK

One service mathematics has rendered the 'Et moi ... - si Javait so comment en revenir. je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. AIl arguably true. And all statements obtainable this way form part of the raison d'etre of this series.


Geometric Properties of Banach Spaces and Nonlinear Iterations

Geometric Properties of Banach Spaces and Nonlinear Iterations

Author: Charles Chidume

Publisher: Springer Science & Business Media

Published: 2009-03-27

Total Pages: 337

ISBN-13: 1848821891

DOWNLOAD EBOOK

The contents of this monograph fall within the general area of nonlinear functional analysis and applications. We focus on an important topic within this area: geometric properties of Banach spaces and nonlinear iterations, a topic of intensive research e?orts, especially within the past 30 years, or so. In this theory, some geometric properties of Banach spaces play a crucial role. In the ?rst part of the monograph, we expose these geometric properties most of which are well known. As is well known, among all in?nite dim- sional Banach spaces, Hilbert spaces have the nicest geometric properties. The availability of the inner product, the fact that the proximity map or nearest point map of a real Hilbert space H onto a closed convex subset K of H is Lipschitzian with constant 1, and the following two identities 2 2 2 ||x+y|| =||x|| +2 x,y +||y|| , (?) 2 2 2 2 ||?x+(1??)y|| = ?||x|| +(1??)||y|| ??(1??)||x?y|| , (??) which hold for all x,y? H, are some of the geometric properties that char- terize inner product spaces and also make certain problems posed in Hilbert spaces more manageable than those in general Banach spaces. However, as has been rightly observed by M. Hazewinkel, “... many, and probably most, mathematical objects and models do not naturally live in Hilbert spaces”. Consequently,toextendsomeoftheHilbertspacetechniquestomoregeneral Banach spaces, analogues of the identities (?) and (??) have to be developed.


Evolution Equations and Approximations

Evolution Equations and Approximations

Author: Kazufumi Ito

Publisher: World Scientific

Published: 2002

Total Pages: 524

ISBN-13: 9789812380265

DOWNLOAD EBOOK

Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR


Functional Analysis, Sobolev Spaces and Partial Differential Equations

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Author: Haim Brezis

Publisher: Springer Science & Business Media

Published: 2010-11-02

Total Pages: 600

ISBN-13: 0387709142

DOWNLOAD EBOOK

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.


Nonlinear Semigroups

Nonlinear Semigroups

Author: Isao Miyadera

Publisher: American Mathematical Soc.

Published:

Total Pages: 246

ISBN-13: 9780821886816

DOWNLOAD EBOOK

This book presents a systematic exposition of the general theory of nonlinear contraction semigroups in Banach spaces and is aimed at students and researchers in science and engineering as well as in mathematics. Suitable for use as a textbook in graduate courses and seminars, this self-contained book is accessible to those with only a basic knowledge of functional analysis. After preprequisites presented in the first chapter, Miyadera covers the basic properties of dissipative operators and nonlinear contraction semigroups in Banach spaces. The generation of nonlinear contraction semigroups, the Komura theorem, and the Crandall-Liggett theorem are explored, and there is a treatment of the convergence of difference approximation of Cauchy problems for ????- dissipative operators and the Kobayashi generation theorem of nonlinear semigroups. Nonlinear Semigroups concludes with applications to nonlinear evolution equations and to first order quasilinear equations.