Nonlinear Structural Mechanics

Nonlinear Structural Mechanics

Author: Walter Lacarbonara

Publisher: Springer Science & Business Media

Published: 2013-01-09

Total Pages: 812

ISBN-13: 1441912762

DOWNLOAD EBOOK

This book reviews the theoretical framework of nonlinear mechanics, covering computational methods, applications, parametric investigations of nonlinear phenomena and mechanical interpretation towards design. Builds skills via increasing levels of complexity.


Linear and Nonlinear Structural Mechanics

Linear and Nonlinear Structural Mechanics

Author: Ali H. Nayfeh

Publisher: John Wiley & Sons

Published: 2008-07-11

Total Pages: 763

ISBN-13: 3527617574

DOWNLOAD EBOOK

* Explains the physical meaning of linear and nonlinear structural mechanics. * Shows how to perform nonlinear structural analysis. * Points out important nonlinear structural dynamics behaviors. * Provides ready-to-use governing equations.


Nonlinear Mechanics of Complex Structures

Nonlinear Mechanics of Complex Structures

Author: Holm Altenbach

Publisher: Springer Nature

Published: 2021-07-29

Total Pages: 476

ISBN-13: 3030758907

DOWNLOAD EBOOK

This book covers different topics of nonlinear mechanics in complex structures, such as the appearance of new nonlinear phenomena and the behavior of finite-dimensional and distributed nonlinear systems, including numerous systems directly connected with important technological problems.


Nonlinear Mechanics for Composite Heterogeneous Structures

Nonlinear Mechanics for Composite Heterogeneous Structures

Author: Georgios A. Drosopoulos

Publisher: CRC Press

Published: 2022-04-26

Total Pages: 327

ISBN-13: 1000579174

DOWNLOAD EBOOK

Nonlinear Mechanics for Composite Heterogeneous Structures applies both classical and multi-scale finite element analysis to the non-linear, failure response of composite structures. These traditional and modern computational approaches are holistically presented, providing insight into a range of non-linear structural analysis problems. The classical methods include geometric and material non-linearity, plasticity, damage and contact mechanics. The cutting-edge formulations include cohesive zone models, the Extended Finite Element Method (XFEM), multi-scale computational homogenization, localization of damage, neural networks and data-driven techniques. This presentation is simple but efficient, enabling the reader to understand, select and apply appropriate methods through programming code or commercial finite element software. The book is suitable for undergraduate studies as a final year textbook and for MSc and PhD studies in structural, mechanical, aerospace engineering and material science, among others. Professionals in these fields will also be strongly benefited. An accompanying website provides MATLAB codes for two-dimensional finite element problems with contact, multi-scale (FE2) and non-linear XFEM analysis, data-driven and machine learning simulations.


Nonlinear Mechanics of Thin-Walled Structures

Nonlinear Mechanics of Thin-Walled Structures

Author: Yury Vetyukov

Publisher: Springer Science & Business Media

Published: 2014-01-23

Total Pages: 280

ISBN-13: 3709117771

DOWNLOAD EBOOK

This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exact. The influence of pre-stresses on the torsional stiffness is shown to be crucial for buckling analysis. Novel finite element schemes for classical rod and shell structures are presented with a comprehensive discussion regarding the theoretical basis, computational aspects and implementation details. Analytical conclusions and closed-form solutions of particular problems are validated against numerical results. The majority of the simulations were performed in the Wolfram Mathematica environment, and the compact source code is provided as a substantial and integral part of the book.


Nonlinear Computational Structural Mechanics

Nonlinear Computational Structural Mechanics

Author: Pierre Ladeveze

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 230

ISBN-13: 1461214327

DOWNLOAD EBOOK

This book treats computational modeling of structures in which strong nonlinearities are present. It is therefore a work in mechanics and engineering, although the discussion centers on methods that are considered parts of applied mathematics. The task is to simulate numerically the behavior of a structure under various imposed excitations, forces, and displacements, and then to determine the resulting damage to the structure, and ultimately to optimize it so as to minimize the damage, subject to various constraints. The method used is iterative: at each stage an approximation to the displacements, strains, and stresses throughout the structure is computated and over all times in the interval of interest. This method leads to a general approach for understanding structural models and the necessary approximations.


Non-Linear Finite Element Analysis in Structural Mechanics

Non-Linear Finite Element Analysis in Structural Mechanics

Author: Wilhelm Rust

Publisher: Springer

Published: 2015-02-18

Total Pages: 367

ISBN-13: 3319133802

DOWNLOAD EBOOK

This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.


Nonlinear Mechanics of Structures

Nonlinear Mechanics of Structures

Author: M. Kleiber

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 470

ISBN-13: 9400905777

DOWNLOAD EBOOK

The aim of this book is to provide a unified presentation of modern mechanics of structures in a form which is suitable for graduate students as well as for engineers and scientists working in the field of applied mechanics. Traditionally, students at technical universities have been taught subjects such as continuum mechanics, elasticity, plates and shells, frames or finite element techniques in an entirely separate manner. The authors' teaching experience clearly suggests that this situation frequently tends to create in students' minds an incomplete and inconsistent picture of the contemporary structural mechanics. Thus, it is very common that the fundamental laws of physics appear to students hardly related to simplified equations of different "technical" theories of structures, numerical solution techniques are studied independently of the essence of mechanical models they describe, and so on. The book is intended to combine in a reasonably connected and unified manner all these problems starting with the very fundamental postulates of nonlinear continuum mechanics via different structural models of "engineer ing" accuracy to numerical solution methods which can effectively be used for solving boundary-value problems of technological importance. The authors have tried to restrict the mathematical background required to that which is normally familiar to a mathematically minded engineering graduate.


Non-Linear Mechanics of Materials

Non-Linear Mechanics of Materials

Author: Jacques Besson

Publisher: Springer Science & Business Media

Published: 2009-11-25

Total Pages: 433

ISBN-13: 9048133564

DOWNLOAD EBOOK

In mechanical engineering and structural analysis there is a significant gap between the material models currently used by engineers for industry applications and those already available in research laboratories. This is especially apparent with the huge progress of computational possibilities and the corresponding dissemination of numerical tools in engineering practice, which essentially deliver linear solutions. Future improvements of design and life assessment methods necessarily involve non-linear solutions for inelastic responses, in plasticity or viscoplasticity, as well as damage and fracture analyses. The dissemination of knowledge can be improved by software developments, data base completion and generalization, but also by information and training. With such a perspective Non-Linear Mechanics of Materials proposes a knowledge actualization, in order to better understand and use recent material constitutive and damage modeling methods in the context of structural analysis or multiscale material microstructure computations.


Nonlinear Dynamics of Structures

Nonlinear Dynamics of Structures

Author: Sergio Oller

Publisher: Springer

Published: 2014-09-04

Total Pages: 203

ISBN-13: 3319051946

DOWNLOAD EBOOK

This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied and the theoretical concepts and its programming algorithms are presented.