This book gives a detailed, up-to-date account of theLenseOCoThirring effect and its implications for physics andastrophysics. Starting from a profound intuition of Lense and Thirringin 1918, based on a simple solution to the linearized Einstein fieldequations, this has emerged in the past four decades as a phenomenonof extraordinary importance in cosmology, radio jets in quasars, andthe physics of neutron stars and black holes, besides leading to someof the most sophisticated experiments ever performed in the spacesurrounding our planet."
This book gives a detailed, up-to-date account of the Lense-Thirring effect and its implications for physics and astrophysics. Starting from a profound intuition of Lense and Thirring in 1918, based on a simple solution to the linearized Einstein field equations, this has emerged in the past four decades as a phenomenon of extraordinary importance in cosmology, radio jets in quasars, and the physics of neutron stars and black holes, besides leading to some of the most sophisticated experiments ever performed in the space surrounding our planet. The book contains the contributions presented at the “Third William Fairbank Meeting”, which have been expanded by adding a complete set of classical and prominent contemporary papers on this subject and a general introduction by R Ruffini.
The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology and the physics of the Big Bang and inflation.
One of the major scientific thrusts in recent years has been to try to harness quantum phenomena to increase dramatically the performance of a wide variety of classical information processing devices. In particular, it is generally accepted that quantum co
In the summer of 2000 the German geo-research satellite CHAMP was launched into orbit. Its innovative payload arrangement and the low initial orbit allow CHAMP to simultaneously collect and almost continuously analyse precise data relating to gravity and magnetic fields at low altitude. In addition, CHAMP also measures the neutral atmosphere and ionosphere using GPS techniques. Three years after launch, more than 200 CHAMP investigators and co-investigators from all over the world met at the GeoForschungsZentrum in Potsdam to present and discuss the results derived from the extensive data sets of the mission. The main outcome of this expert meeting is summarized in this volume. The book offers a comprehensive insight into the present status of the exploitation of CHAMP data for Earth system research and practical applications in geodesy, geophysics and meteorology.
The Marcel Grossmann meetings were conceived to promote theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. They review recent developments in gravitation and general relativity, with major emphasis on mathematical foundations and physical predictions. Their main objective is to bring together scientists from diverse backgrounds and their range of topics is broad, from more abstract classical theory and quantum gravity and strings to more concrete relativistic astrophysics observations and modeling.This Tenth Marcel Grossmann Meeting was organized by an international committee composed of D Blair, Y Choquet-Bruhat, D Christodoulou, T Damour, J Ehlers, F Everitt, Fang Li Zhi, S Hawking, Y Ne'eman, R Ruffini (chair), H Sato, R Sunyaev, and S Weinberg and backed by an international coordinating committee of about 135 members from scientific institutions representing 54 countries. The scientific program included 29 morning plenary talks during 6 days, and 57 parallel sessions over five afternoons, during which roughly 500 papers were presented.These three volumes of the proceedings of MG10 give a broad view of all aspects of gravitation, from mathematical issues to recent observations and experiments.
The Marcel Grossmann meetings were conceived to promote theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. They review recent developments in gravitation and general relativity, with major emphasis on mathematical foundations and physical predictions. Their main objective is to bring together scientists from diverse backgrounds and their range of topics is broad, from more abstract classical theory and quantum gravity and strings to more concrete relativistic astrophysics observations and modeling. This Tenth Marcel Grossmann Meeting was organized by an international committee composed of D Blair, Y Choquet-Bruhat, D Christodoulou, T Damour, J Ehlers, F Everitt, Fang Li Zhi, S Hawking, Y Ne'eman, R Ruffini (chair), H Sato, R Sunyaev, and S Weinberg and backed by an international coordinating committee of about 135 members from scientific institutions representing 54 countries. The scientific program included 29 morning plenary talks during 6 days, and 57 parallel sessions over five afternoons, during which roughly 500 papers were presented. These three volumes of the proceedings of MG10 give a broad view of all aspects of gravitation, from mathematical issues to recent observations and experiments. Sample Chapter(s) Part A: Plenary and Review Talks The Initial Value Problem Using Metric and Extrinsic Curvature (566k) Part B: Plenary and Review Talks The Largest Optical Telescopes: Today VLT; Tomorrow Owl. (951k) Part C: Parallel Sessions Numerical Simulation of General Relativistic Stellar Collapse (1,337k) Contents: The Initial Value Problem Using Metric and Extrinsic Curvature "(J W York Jr)"Mathematics, Physics and Ping-Pong "(Y Ne'eman)"Thermal Decay of the Cosmological Constant into Black Holes "(C Teitelboim)"Structure Formation in the Universe by Exact Methods "(A Krasinski & C Hellaby)"Overview of D-brane Worlds in String Theory "(A M Uranga)"Tachyons, D-brane Decay, and Closed Strings "(B Zwiebach)"String Compactifications -- Old and New "(A Dabholkar)"Covariant Quantization of the Superstring "(N Berkovits)"Limiting Braneworlds with the Binary Pulsar "(R Durrer & P Kocian)"Cosmological Instabilities from Vector Perturbations in Braneworlds "(R Durrer et al.)"Principles of Affine Quantum Gravity "(J R Klauder)"Developments in GRworkbench "(A Moylan et al.)"Constants of Nature? "(H B Sandvik)"Gravitational Wave Detection: A Survey of the Worldwide Program "(J Degallaix & D Blair)"Evidence for Coincident Events Between the Gravitational Wave Detectors EXPLORER and NAUTILUS "(G Pizzella)"The LIGO Gravitational Wave Observatories: Recent Results and Future Plans "(G M Harry et al.)"General Relativity in Space and Sensitive Tests of the Equivalence Principle "(C Lammerzahl)"Multiwavelength Afterglows of Gamma-Ray Bursts "(E Pian)"Black Hole Physics and Astrophysics: The GRB-Supernova Connection and URCA-1 -- URCA-2 "(R Ruffini et al.)"Black Holes from the Dark Ages: Exploring the Reionization Era and Early Structure Formation with Quasars and Gamma-Ray Bursts "(S G Djorgovski)"The Diagnostic Power of X-Ray Emission Lines in GRBs "(M Bottcher)"