Forty scientists working in 13 different countries detail in this work the most recent advances in seismic design and performance assessment of reinforced concrete buildings. It is a valuable contribution in the mitigation of natural disasters.
The contents of this book have been chosen with the following main aims: to review the present coverage of the major design codes and the CIRIA guide, and to explain the fundamental behaviour of deep beams; to provide information on design topics which are inadequately covered by the current codes and design manuals; and to give authoritative revie
Nonlinear Finite Element Analysis of Composite and Reinforced Concrete Beams presents advanced methods and techniques for the analysis of composite and FRP reinforced concrete beams. The title introduces detailed numerical modeling methods and the modeling of the structural behavior of composite beams, including critical interfacial bond-slip behavior. It covers a new family of composite beam elements developed by the authors. Other sections cover nonlinear finite element analysis procedures and the numerical modeling techniques used in commercial finite element software that will be of particular interest to engineers and researchers executing numerical simulations. - Gives advanced methods and techniques for the analysis of composite and fiber Reinforced Plastic (FRP) and reinforced concrete beams - Presents new composite beam elements developed by the authors - Introduces numerical techniques for the development of effective finite element models using commercial software - Discusses the critical issues encountered in structural analysis - Maintains a clear focus on advanced numerical modeling
A Powerful Tool for the Analysis and Design of Complex Structural ElementsFinite-Element Modelling of Structural Concrete: Short-Term Static and Dynamic Loading Conditions presents a finite-element model of structural concrete under short-term loading, covering the whole range of short-term loading conditions, from static (monotonic and cyclic) to
Forty scientists working in 13 different countries detail in this work the most recent advances in seismic design and performance assessment of reinforced concrete buildings. It is a valuable contribution in the mitigation of natural disasters.
This book describes the application of nonlinear static and dynamic analysis for the design, maintenance and seismic strengthening of reinforced concrete structures. The latest structural and RC constitutive modelling techniques are described in detail, with particular attention given to multi-dimensional cracking and damage assessment, and their practical applications for performance-based design. Other subjects covered include 2D/3D analysis techniques, bond and tension stiffness, shear transfer, compression and confinement. It can be used in conjunction with WCOMD and COM3 software Nonlinear Mechanics of Reinforced Concrete presents a practical methodology for structural engineers, graduate students and researchers concerned with the design and maintenance of concrete structures.
Based on the 1995 edition of the American Concrete Institute Building Code, this text explains the theory and practice of reinforced concrete design in a systematic and clear fashion, with an abundance of step-by-step worked examples, illustrations, and photographs. The focus is on preparing students to make the many judgment decisions required in reinforced concrete design, and reflects the author's experience as both a teacher of reinforced concrete design and as a member of various code committees. This edition provides new, revised and expanded coverage of the following topics: core testing and durability; shrinkage and creep; bases the maximum steel ratio and the value of the factor on Appendix B of ACI318-95; composite concrete beams; strut-and-tie models; dapped ends and T-beam flanges. It also expands the discussion of STMs and adds new examples in SI units.