Linear and Non-linear Stability Analysis in Boiling Water Reactors

Linear and Non-linear Stability Analysis in Boiling Water Reactors

Author: Alfonso Prieto Guerrero

Publisher: Woodhead Publishing

Published: 2018-10-15

Total Pages: 474

ISBN-13: 0081024460

DOWNLOAD EBOOK

Linear and Non-Linear Stability Analysis in Boiling Water Reactors: The Design of Real-Time Stability Monitors presents a thorough analysis of the most innovative BWR reactors and stability phenomena in one accessible resource. The book presents a summary of existing literature on BWRs to give early career engineers and researchers a solid background in the field, as well as the latest research on stability phenomena (propagation phenomena in BWRs), nuclear power monitors, and advanced computer systems used to for the prediction of stability. It also emphasizes the importance of BWR technology and embedded neutron monitoring systems (APRMs and LPRMs), and introduces non-linear stability parameters that can be used for the onset detection of instabilities in BWRs. Additionally, the book details the scope, advantages, and disadvantages of multiple advanced linear and non linear signal processing methods, and includes analytical case studies of existing plants. This combination makes Linear and Non-Linear Stability Analysis in Boiling Water Reactors a valuable resource for nuclear engineering students focusing on linear and non-linear analysis, as well as for those working and researching in a nuclear power capacity looking to implement stability methods and estimate decay ratios using non-linear techniques. - Explores the nuclear stability of Boiling Water Reactors based on linear and non-linear models - Evaluates linear signal processing methods such as autoregressive models, Fourier-based methods, and wavelets to calculate decay ratios - Proposes novel non-linear signal analysis techniques linked to non-linear stability indicators - Includes case studies of various existing nuclear power plants as well as mathematical models and simulations


Noise and Nonlinear Phenomena in Nuclear Systems

Noise and Nonlinear Phenomena in Nuclear Systems

Author: J.L. Munoz-Cobo

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 452

ISBN-13: 146845613X

DOWNLOAD EBOOK

The main goal of the meeting was to facilitate and encourage the application of recent developments in the physical and mathematical sciences to the analysis of deterministic and stochastic processes in nuclear engineering. In contrast with the rapid growth (triggered by computer developments) of nonlinear analysis in other branches of the physical sciences, the theoretical analysis of nuclear reactors is still based on linearized models of the neutronics and thermal-hydraulic feedback loop, an approach that ignores some intrinsic nonlinearities of the real system. The subject of noise was added because of the importance of the noise technique in detecting abnormalities associated with perturbations of sufficient amplitude to generate nonlinear processes. Consequently the organizers of the meeting invited a group of leading researchers in the field of noise and nonlinear phenomena in nuclear systems to report on recent advances in their area of research. A selected subgroup of researchers in areas outside the reactor field provided enlightenment on new theoretical developments of immediate relevance to nuclear dynamics theory.


Nuclear Computational Science

Nuclear Computational Science

Author: Yousry Azmy

Publisher: Springer Science & Business Media

Published: 2010-04-15

Total Pages: 476

ISBN-13: 9048134110

DOWNLOAD EBOOK

Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational science and mathematical theory. Comprising eight chapters, Nuclear Computational Science: A Century in Review incorporates a number of carefully selected issues representing a variety of problems, providing the reader with a wealth of information in both a clear and concise manner. The comprehensive nature of the coverage and the stature of the contributing authors combine to make this a unique landmark publication. Targeting the medium to advanced level academic, this book will appeal to researchers and students with an interest in the progression of mathematical theory and its application to nuclear computational science.


Advanced Concepts In Nuclear Energy Risk Assessment And Management

Advanced Concepts In Nuclear Energy Risk Assessment And Management

Author: Tunc Aldemir

Publisher: World Scientific

Published: 2018-04-25

Total Pages: 554

ISBN-13: 9813225629

DOWNLOAD EBOOK

Over the past 30 years, numerous concerns have been raised in the literature regarding the capability of static modeling approaches such as the event-tree (ET)/fault-tree (FT) methodology to adequately account for the impact of process/hardware/software/firmware/human interactions on nuclear power plant safety assessment, and methodologies to augment the ET/FT approach have been proposed. Often referred to as dynamic probabilistic risk/safety assessment (DPRA/DPSA) methodologies, which use a time-dependent phenomenological model of system evolution along with a model of its stochastic behavior to model for possible dependencies among failure events. The book contains a collection of papers that describe at existing plant level applicable DPRA/DPSA tools, as well as techniques that can be used to augment the ET/FT approach when needed.


An Experimental and Modelling Study of Natural-circulation Boiling Water Reactor Dynamics

An Experimental and Modelling Study of Natural-circulation Boiling Water Reactor Dynamics

Author: Róbert Zboray

Publisher: IOS Press

Published: 2002

Total Pages: 178

ISBN-13:

DOWNLOAD EBOOK

Contents of this Doctoral Dissertation include: Understanding the linear stability characteristics of BWRs, Experiments on the stability of the Desire facility, Applications of the reducer-order model, Numerical analysis of the nonlinear dynamics of BWRs, Experiments on the nonlinear dynamics of natural-circulation two-phase flows, Experiments on the neutronic-thermalhydraulic stability, Conclusions and Discussion


Applied Chaos

Applied Chaos

Author: J. H. Kim

Publisher: Wiley-VCH

Published: 1992-10-14

Total Pages: 576

ISBN-13:

DOWNLOAD EBOOK

Contains an edited collection of papers by experts from all disciplines of chaos which are the result of the International Workshop on Applications of Chaos, sponsored by the Electric Power Research Institute. Focusing on the actual and potential methodologies of the latest investigations in chaos dynamics, topics presented here run the gamut from the dynamics of electrocardiograph information and the instability of conveyor belts to the time series modeling and control of chaos.


Nonlinear Dynamics, Chaos, and Complexity

Nonlinear Dynamics, Chaos, and Complexity

Author: Dimitri Volchenkov

Publisher: Springer Nature

Published: 2020-12-14

Total Pages: 198

ISBN-13: 9811590346

DOWNLOAD EBOOK

This book demonstrates how mathematical methods and techniques can be used in synergy and create a new way of looking at complex systems. It becomes clear nowadays that the standard (graph-based) network approach, in which observable events and transportation hubs are represented by nodes and relations between them are represented by edges, fails to describe the important properties of complex systems, capture the dependence between their scales, and anticipate their future developments. Therefore, authors in this book discuss the new generalized theories capable to describe a complex nexus of dependences in multi-level complex systems and to effectively engineer their important functions. The collection of works devoted to the memory of Professor Valentin Afraimovich introduces new concepts, methods, and applications in nonlinear dynamical systems covering physical problems and mathematical modelling relevant to molecular biology, genetics, neurosciences, artificial intelligence as well as classic problems in physics, machine learning, brain and urban dynamics. The book can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists, urban planners, and even musicians (with some mathematical background).


Global Neutron Calculations

Global Neutron Calculations

Author: Mihály Makai

Publisher: Bentham Science Publishers

Published: 2015-03-05

Total Pages: 576

ISBN-13: 1681080273

DOWNLOAD EBOOK

Global Neutron Calculations provides assessment guidelines for nuclear reactors in a step-by-step manner. The book introduces readers to principal physical ideas, the fundamentals of nuclear reactors including the theory of self-sustaining chain reactions and the associated physical and mathematical calculations. The required theory, the mathematical appparatus and, the applied methods are comprehensively explained in the first half of the book followed by details about the applications of the theory and methods. Readers will gain essential information about reactor control and surveillance, instrumentation and control, technology, fuel management, core design and the differences in reactor technologies. Global Neutron Calculations demystifies technical and mathematical knowledge about reactor design, operation, safety and analysis for engineers learning about one of mankind’s most controversial means of power generation.


Two-Fluid Model Stability, Simulation and Chaos

Two-Fluid Model Stability, Simulation and Chaos

Author: Martín López de Bertodano

Publisher: Springer

Published: 2016-11-09

Total Pages: 367

ISBN-13: 3319449680

DOWNLOAD EBOOK

This book addresses the linear and nonlinear two-phase stability of the one-dimensional Two-Fluid Model (TFM) material waves and the numerical methods used to solve it. The TFM fluid dynamic stability is a problem that remains open since its inception more than forty years ago. The difficulty is formidable because it involves the combined challenges of two-phase topological structure and turbulence, both nonlinear phenomena. The one dimensional approach permits the separation of the former from the latter.The authors first analyze the kinematic and Kelvin-Helmholtz instabilities with the simplified one-dimensional Fixed-Flux Model (FFM). They then analyze the density wave instability with the well-known Drift-Flux Model. They demonstrate that the Fixed-Flux and Drift-Flux assumptions are two complementary TFM simplifications that address two-phase local and global linear instabilities separately. Furthermore, they demonstrate with a well-posed FFM and a DFM two cases of nonlinear two-phase behavior that are chaotic and Lyapunov stable. On the practical side, they also assess the regularization of an ill-posed one-dimensional TFM industrial code. Furthermore, the one-dimensional stability analyses are applied to obtain well-posed CFD TFMs that are either stable (RANS) or Lyapunov stable (URANS), with the focus on numerical convergence.