Nonequilibrium Quantum Field Theory

Nonequilibrium Quantum Field Theory

Author: Esteban A. Calzetta

Publisher: Cambridge University Press

Published: 2023-01-31

Total Pages: 553

ISBN-13: 1009289985

DOWNLOAD EBOOK

This 2008 book, reissued as OA, captures the essence of nonequilibrium quantum field theory, graduate students and researchers.


Field Theory of Non-Equilibrium Systems

Field Theory of Non-Equilibrium Systems

Author: Alex Kamenev

Publisher: Cambridge University Press

Published: 2011-09-08

Total Pages:

ISBN-13: 1139500295

DOWNLOAD EBOOK

The physics of non-equilibrium many-body systems is one of the most rapidly expanding areas of theoretical physics. Traditionally used in the study of laser physics and superconducting kinetics, these techniques have more recently found applications in the study of dynamics of cold atomic gases, mesoscopic and nano-mechanical systems. The book gives a self-contained presentation of the modern functional approach to non-equilibrium field-theoretical methods. They are applied to examples ranging from biophysics to the kinetics of superfluids and superconductors. Its step-by-step treatment gives particular emphasis to the pedagogical aspects, making it ideal as a reference for advanced graduate students and researchers in condensed matter physics.


Quantum Field Theory of Non-equilibrium States

Quantum Field Theory of Non-equilibrium States

Author: Jørgen Rammer

Publisher: Cambridge University Press

Published: 2011-03-03

Total Pages: 0

ISBN-13: 9780521188005

DOWNLOAD EBOOK

Quantum field theory is the application of quantum mechanics to systems with infinitely many degrees of freedom. This 2007 textbook presents quantum field theoretical applications to systems out of equilibrium. It introduces the real-time approach to non-equilibrium statistical mechanics and the quantum field theory of non-equilibrium states in general. It offers two ways of learning how to study non-equilibrium states of many-body systems: the mathematical canonical way and an easy intuitive way using Feynman diagrams. The latter provides an easy introduction to the powerful functional methods of field theory, and the use of Feynman diagrams to study classical stochastic dynamics is considered in detail. The developed real-time technique is applied to study numerous phenomena in many-body systems. Complete with numerous exercises to aid self-study, this textbook is suitable for graduate students in statistical mechanics and condensed matter physics.


Nonequilibrium Many-Body Theory of Quantum Systems

Nonequilibrium Many-Body Theory of Quantum Systems

Author: Gianluca Stefanucci

Publisher: Cambridge University Press

Published: 2013-03-07

Total Pages: 619

ISBN-13: 1107354579

DOWNLOAD EBOOK

The Green's function method is one of the most powerful and versatile formalisms in physics, and its nonequilibrium version has proved invaluable in many research fields. This book provides a unique, self-contained introduction to nonequilibrium many-body theory. Starting with basic quantum mechanics, the authors introduce the equilibrium and nonequilibrium Green's function formalisms within a unified framework called the contour formalism. The physical content of the contour Green's functions and the diagrammatic expansions are explained with a focus on the time-dependent aspect. Every result is derived step-by-step, critically discussed and then applied to different physical systems, ranging from molecules and nanostructures to metals and insulators. With an abundance of illustrative examples, this accessible book is ideal for graduate students and researchers who are interested in excited state properties of matter and nonequilibrium physics.


Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology

Nonequilibrium Quantum Transport Physics In Nanosystems: Foundation Of Computational Nonequilibrium Physics In Nanoscience And Nanotechnology

Author: Felix A Buot

Publisher: World Scientific

Published: 2009-08-05

Total Pages: 838

ISBN-13: 9814472972

DOWNLOAD EBOOK

This book presents the first comprehensive treatment of discrete phase-space quantum mechanics and the lattice Weyl-Wigner formulation of energy band dynamics, by the originator of these theoretical techniques. The author's quantum superfield theoretical formulation of nonequilibrium quantum physics is given in real time, without the awkward use of artificial time contour employed in previous formulations. These two main quantum theoretical techniques combine to yield general (including quasiparticle-pairing dynamics) and exact quantum transport equations in phase-space, appropriate for nanodevices. The derivation of transport formulas in mesoscopic physics from the general quantum transport equations is also treated. Pioneering nanodevices are discussed in the light of the quantum-transport physics equations, and an in-depth treatment of the physics of resonant tunneling devices is given. Operator Hilbert-space methods and quantum tomography are discussed. Discrete phase-space quantum mechanics on finite fields is treated for completeness and by virtue of its relevance to quantum computing. The phenomenological treatment of evolution superoperator and measurements is given to help clarify the general quantum transport theory. Quantum computing and information theory is covered to demonstrate the foundational aspects of discrete quantum dynamics, particularly in deriving a complete set of multiparticle entangled basis states.


Condensed Matter Field Theory

Condensed Matter Field Theory

Author: Alexander Altland

Publisher: Cambridge University Press

Published: 2010-03-11

Total Pages: 785

ISBN-13: 0521769752

DOWNLOAD EBOOK

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.


Statistical Physics of Non Equilibrium Quantum Phenomena

Statistical Physics of Non Equilibrium Quantum Phenomena

Author: Yves Pomeau

Publisher: Springer Nature

Published: 2019-11-29

Total Pages: 227

ISBN-13: 3030343944

DOWNLOAD EBOOK

This book provides an introduction to topics in non-equilibrium quantum statistical physics for both mathematicians and theoretical physicists. The first part introduces a kinetic equation, of Kolmogorov type, which is needed to describe an isolated atom (actually, in experiments, an ion) under the effect of a classical pumping electromagnetic field which keeps the atom in its excited state(s) together with the random emission of fluorescence photons which put it back into its ground state. The quantum kinetic theory developed in the second part is an extension of Boltzmann's classical (non-quantum) kinetic theory of a dilute gas of quantum bosons. This is the source of many interesting fundamental questions, particularly because, if the temperature is low enough, such a gas is known to have at equilibrium a transition, the Bose–Einstein transition, where a finite portion of the particles stay in the quantum ground state. An important question considered is how a Bose gas condensate develops in time if its energy is initially low enough.


Applications Of Field Theory Methods In Statistical Physics Of Nonequilibrium Systems

Applications Of Field Theory Methods In Statistical Physics Of Nonequilibrium Systems

Author: Bohdan I Lev

Publisher: World Scientific

Published: 2021-02-18

Total Pages: 352

ISBN-13: 9811229996

DOWNLOAD EBOOK

This book formulates a unified approach to the description of many-particle systems combining the methods of statistical physics and quantum field theory. The benefits of such an approach are in the description of phase transitions during the formation of new spatially inhomogeneous phases, as well in describing quasi-equilibrium systems with spatially inhomogeneous particle distributions (for example, self-gravitating systems) and metastable states.The validity of the methods used in the statistical description of many-particle systems and models (theory of phase transitions included) is discussed and compared. The idea of using the quantum field theory approach and related topics (path integration, saddle-point and stationary-phase methods, Hubbard-Stratonovich transformation, mean-field theory, and functional integrals) is described in detail to facilitate further understanding and explore more applications.To some extent, the book could be treated as a brief encyclopedia of methods applicable to the statistical description of spatially inhomogeneous equilibrium and metastable particle distributions. Additionally, the general approach is not only formulated, but also applied to solve various practically important problems (gravitating gas, Coulomb-like systems, dusty plasmas, thermodynamics of cellular structures, non-uniform dynamics of gravitating systems, etc.).


Quantum Gases

Quantum Gases

Author: Nick Proukakis

Publisher: World Scientific

Published: 2013

Total Pages: 579

ISBN-13: 1848168128

DOWNLOAD EBOOK

This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.


Nonequilibrium Quantum Field Theory

Nonequilibrium Quantum Field Theory

Author: Esteban A. Calzetta

Publisher: Cambridge University Press

Published: 2008-07-24

Total Pages: 0

ISBN-13: 0521641683

DOWNLOAD EBOOK

Bringing together the key ideas from nonequilibrium statistical mechanics and powerful methodology from quantum field theory, this book captures the essence of nonequilibrium quantum field theory. Beginning with the foundational aspects of the theory, the book presents important concepts and useful techniques, discusses issues of basic interest, and shows how thermal field, linear response, kinetic theories and hydrodynamics emerge. It also illustrates how these concepts and methodology are applied to current research topics including nonequilibrium phase transitions, thermalization in relativistic heavy ion collisions, the nonequilibrium dynamics of Bose-Einstein condensation, and the generation of structures from quantum fluctuations in the early Universe. Divided into five parts, each part addresses a particular stage in the conceptual and technical development of the subject.