Nondifferentiable Optimization and Polynomial Problems

Nondifferentiable Optimization and Polynomial Problems

Author: N.Z. Shor

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 407

ISBN-13: 1475760159

DOWNLOAD EBOOK

Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, ... , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), ... , Pm (:e) are polynomial functions in R with real coefficients. In general, a PEP can be formulated in the following form: (0.1) find r = inf Po(:e) subject to constraints (0.2) Pi (:e) =0, i=l, ... ,m (a constraint in the form of inequality can be written in the form of equality by introducing a new variable: for example, P( x) ~ 0 is equivalent to P(:e) + y2 = 0). Boolean and mixed polynomial problems can be written in usual form by adding for each boolean variable z the equality: Z2 - Z = O. Let a = {al, ... ,a } be integer vector with nonnegative entries {a;}f=l. n Denote by R[a](:e) monomial in n variables of the form: n R[a](:e) = IT :ef'; ;=1 d(a) = 2:7=1 ai is the total degree of monomial R[a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(:e) = L caR[a](:e), aEA{P) IX x Nondifferentiable optimization and polynomial problems where A(P) is the set of monomials contained in polynomial P.


Modern Nonconvex Nondifferentiable Optimization

Modern Nonconvex Nondifferentiable Optimization

Author: Ying Cui

Publisher: Society for Industrial and Applied Mathematics (SIAM)

Published: 2022

Total Pages: 0

ISBN-13: 9781611976731

DOWNLOAD EBOOK

"This monograph serves present and future needs where nonconvexity and nondifferentiability are inevitably present in the faithful modeling of real-world applications of optimization"--


Nondifferentiable Optimization: Motivations and Applications

Nondifferentiable Optimization: Motivations and Applications

Author: Vladimir F. Demyanov

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 355

ISBN-13: 3662126036

DOWNLOAD EBOOK

The International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria, has been involved in research on nondifferentiable optimization since 1976. IIASA-based East-West cooperation in this field has been very productive, leading to many important theoretical, algorithmic and applied results. Nondifferentiable optimi zation has now become a recognized and rapidly developing branch of mathematical programming. To continue this tradition, and to review recent developments in this field, IIASA held a Workshop on Nondifferentiable Optimization in Sopron (Hungary) in September 1964. The aims of the Workshop were: 1. To discuss the state-of-the-art of nondifferentiable optimization (NDO), its origins and motivation; 2. To compare-various algorithms; 3. To evaluate existing mathematical approaches, their applications and potential; 4. To extend and deepen industrial and other applications of NDO. The following topics were considered in separate sessions: General motivation for research in NDO: nondifferentiability in applied problems, nondifferentiable mathematical models. Numerical methods for solving nondifferentiable optimization problems, numerical experiments, comparisons and software. Nondifferentiable analysis: various generalizations of the concept of subdifferen tials. Industrial and other applications. This volume contains selected papers presented at the Workshop. It is divided into four sections, based on the above topics: I. Concepts in Nonsmooth Analysis II. Multicriteria Optimization and Control Theory III. Algorithms and Optimization Methods IV. Stochastic Programming and Applications We would like to thank the International Institute for Applied Systems Analysis, particularly Prof. V. Kaftanov and Prof. A.B. Kurzhanski, for their support in organiz ing this meeting.


Encyclopedia of Optimization

Encyclopedia of Optimization

Author: Christodoulos A. Floudas

Publisher: Springer Science & Business Media

Published: 2008-09-04

Total Pages: 4646

ISBN-13: 0387747583

DOWNLOAD EBOOK

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".


Nondifferentiable and Two-Level Mathematical Programming

Nondifferentiable and Two-Level Mathematical Programming

Author: Kiyotaka Shimizu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 482

ISBN-13: 1461563054

DOWNLOAD EBOOK

The analysis and design of engineering and industrial systems has come to rely heavily on the use of optimization techniques. The theory developed over the last 40 years, coupled with an increasing number of powerful computational procedures, has made it possible to routinely solve problems arising in such diverse fields as aircraft design, material flow, curve fitting, capital expansion, and oil refining just to name a few. Mathematical programming plays a central role in each of these areas and can be considered the primary tool for systems optimization. Limits have been placed on the types of problems that can be solved, though, by the difficulty of handling functions that are not everywhere differentiable. To deal with real applications, it is often necessary to be able to optimize functions that while continuous are not differentiable in the classical sense. As the title of the book indicates, our chief concern is with (i) nondifferentiable mathematical programs, and (ii) two-level optimization problems. In the first half of the book, we study basic theory for general smooth and nonsmooth functions of many variables. After providing some background, we extend traditional (differentiable) nonlinear programming to the nondifferentiable case. The term used for the resultant problem is nondifferentiable mathematical programming. The major focus is on the derivation of optimality conditions for general nondifferentiable nonlinear programs. We introduce the concept of the generalized gradient and derive Kuhn-Tucker-type optimality conditions for the corresponding formulations.


Nonlinear Optimization

Nonlinear Optimization

Author: Andrzej Ruszczynski

Publisher: Princeton University Press

Published: 2011-09-19

Total Pages: 463

ISBN-13: 1400841054

DOWNLOAD EBOOK

Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern topics such as optimality conditions and numerical methods for problems involving nondifferentiable functions, semidefinite programming, metric regularity and stability theory of set-constrained systems, and sensitivity analysis of optimization problems. Based on a decade's worth of notes the author compiled in successfully teaching the subject, this book will help readers to understand the mathematical foundations of the modern theory and methods of nonlinear optimization and to analyze new problems, develop optimality theory for them, and choose or construct numerical solution methods. It is a must for anyone seriously interested in optimization.


Modern Nonconvex Nondifferentiable Optimization

Modern Nonconvex Nondifferentiable Optimization

Author: Ying Cui

Publisher: SIAM

Published: 2021-12-02

Total Pages: 792

ISBN-13: 161197674X

DOWNLOAD EBOOK

Starting with the fundamentals of classical smooth optimization and building on established convex programming techniques, this research monograph presents a foundation and methodology for modern nonconvex nondifferentiable optimization. It provides readers with theory, methods, and applications of nonconvex and nondifferentiable optimization in statistical estimation, operations research, machine learning, and decision making. A comprehensive and rigorous treatment of this emergent mathematical topic is urgently needed in today’s complex world of big data and machine learning. This book takes a thorough approach to the subject and includes examples and exercises to enrich the main themes, making it suitable for classroom instruction. Modern Nonconvex Nondifferentiable Optimization is intended for applied and computational mathematicians, optimizers, operations researchers, statisticians, computer scientists, engineers, economists, and machine learners. It could be used in advanced courses on optimization/operations research and nonconvex and nonsmooth optimization.


Nonlinear Multiobjective Optimization

Nonlinear Multiobjective Optimization

Author: Kaisa Miettinen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 304

ISBN-13: 1461555639

DOWNLOAD EBOOK

Problems with multiple objectives and criteria are generally known as multiple criteria optimization or multiple criteria decision-making (MCDM) problems. So far, these types of problems have typically been modelled and solved by means of linear programming. However, many real-life phenomena are of a nonlinear nature, which is why we need tools for nonlinear programming capable of handling several conflicting or incommensurable objectives. In this case, methods of traditional single objective optimization and linear programming are not enough; we need new ways of thinking, new concepts, and new methods - nonlinear multiobjective optimization. Nonlinear Multiobjective Optimization provides an extensive, up-to-date, self-contained and consistent survey, review of the literature and of the state of the art on nonlinear (deterministic) multiobjective optimization, its methods, its theory and its background. The amount of literature on multiobjective optimization is immense. The treatment in this book is based on approximately 1500 publications in English printed mainly after the year 1980. Problems related to real-life applications often contain irregularities and nonsmoothnesses. The treatment of nondifferentiable multiobjective optimization in the literature is rather rare. For this reason, this book contains material about the possibilities, background, theory and methods of nondifferentiable multiobjective optimization as well. This book is intended for both researchers and students in the areas of (applied) mathematics, engineering, economics, operations research and management science; it is meant for both professionals and practitioners in many different fields of application. The intention has been to provide a consistent summary that may help in selecting an appropriate method for the problem to be solved. It is hoped the extensive bibliography will be of value to researchers.