Noncommutative Motives

Noncommutative Motives

Author: Gonçalo Tabuada

Publisher: American Mathematical Soc.

Published: 2015-09-21

Total Pages: 127

ISBN-13: 1470423979

DOWNLOAD EBOOK

The theory of motives began in the early 1960s when Grothendieck envisioned the existence of a "universal cohomology theory of algebraic varieties". The theory of noncommutative motives is more recent. It began in the 1980s when the Moscow school (Beilinson, Bondal, Kapranov, Manin, and others) began the study of algebraic varieties via their derived categories of coherent sheaves, and continued in the 2000s when Kontsevich conjectured the existence of a "universal invariant of noncommutative algebraic varieties". This book, prefaced by Yuri I. Manin, gives a rigorous overview of some of the main advances in the theory of noncommutative motives. It is divided into three main parts. The first part, which is of independent interest, is devoted to the study of DG categories from a homotopical viewpoint. The second part, written with an emphasis on examples and applications, covers the theory of noncommutative pure motives, noncommutative standard conjectures, noncommutative motivic Galois groups, and also the relations between these notions and their commutative counterparts. The last part is devoted to the theory of noncommutative mixed motives. The rigorous formalization of this latter theory requires the language of Grothendieck derivators, which, for the reader's convenience, is revised in a brief appendix.


Noncommutative Geometry, Quantum Fields and Motives

Noncommutative Geometry, Quantum Fields and Motives

Author: Alain Connes

Publisher: American Mathematical Soc.

Published: 2019-03-13

Total Pages: 810

ISBN-13: 1470450453

DOWNLOAD EBOOK

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.


Commutative Algebra and Noncommutative Algebraic Geometry

Commutative Algebra and Noncommutative Algebraic Geometry

Author: David Eisenbud

Publisher: Cambridge University Press

Published: 2015-11-19

Total Pages: 463

ISBN-13: 1107065623

DOWNLOAD EBOOK

This book surveys fundamental current topics in these two areas of research, emphasising the lively interaction between them. Volume 1 contains expository papers ideal for those entering the field.


Noncommutative Geometry and Physics

Noncommutative Geometry and Physics

Author: Alan L. Carey

Publisher: European Mathematical Society

Published: 2011

Total Pages: 288

ISBN-13: 9783037190081

DOWNLOAD EBOOK

This collection of expository articles grew out of the workshop ``Number Theory and Physics'' held in March 2009 at The Erwin Schrodinger International Institute for Mathematical Physics, Vienna. The common theme of the articles is the influence of ideas from noncommutative geometry (NCG) on subjects ranging from number theory to Lie algebras, index theory, and mathematical physics. Matilde Marcolli's article gives a survey of relevant aspects of NCG in number theory, building on an introduction to motives for beginners by Jorge Plazas and Sujatha Ramdorai. A mildly unconventional view of index theory, from the viewpoint of NCG, is described in the article by Alan Carey, John Phillips, and Adam Rennie. As developed by Alain Connes and Dirk Kreimer, NCG also provides insight into novel algebraic structures underlying many analytic aspects of quantum field theory. Dominique Manchon's article on pre-Lie algebras fits into this developing research area. This interplay of algebraic and analytic techniques also appears in the articles by Christoph Bergbauer, who introduces renormalization theory and Feynman diagram methods, and Sylvie Paycha, who focuses on relations between renormalization and zeta function techniques.


Topics in Noncommutative Geometry

Topics in Noncommutative Geometry

Author: Guillermo Cortiñas

Publisher: American Mathematical Soc.

Published: 2012

Total Pages: 289

ISBN-13: 0821868640

DOWNLOAD EBOOK

Luis Santalo Winter Schools are organized yearly by the Mathematics Department and the Santalo Mathematical Research Institute of the School of Exact and Natural Sciences of the University of Buenos Aires (FCEN). This volume contains the proceedings of the third Luis Santalo Winter School which was devoted to noncommutative geometry and held at FCEN July 26-August 6, 2010. Topics in this volume concern noncommutative geometry in a broad sense, encompassing various mathematical and physical theories that incorporate geometric ideas to the study of noncommutative phenomena. It explores connections with several areas including algebra, analysis, geometry, topology and mathematical physics. Bursztyn and Waldmann discuss the classification of star products of Poisson structures up to Morita equivalence. Tsygan explains the connections between Kontsevich's formality theorem, noncommutative calculus, operads and index theory. Hoefel presents a concrete elementary construction in operad theory. Meyer introduces the subject of $\mathrm{C}^*$-algebraic crossed products. Rosenberg introduces Kasparov's $KK$-theory and noncommutative tori and includes a discussion of the Baum-Connes conjecture for $K$-theory of crossed products, among other topics. Lafont, Ortiz, and Sanchez-Garcia carry out a concrete computation in connection with the Baum-Connes conjecture. Zuk presents some remarkable groups produced by finite automata. Mesland discusses spectral triples and the Kasparov product in $KK$-theory. Trinchero explores the connections between Connes' noncommutative geometry and quantum field theory. Karoubi demonstrates a construction of twisted $K$-theory by means of twisted bundles. Tabuada surveys the theory of noncommutative motives.


New Directions in Homotopy Theory

New Directions in Homotopy Theory

Author: Nitya Kitchloo, Mona Merling

Publisher: American Mathematical Soc.

Published: 2018-05-29

Total Pages: 208

ISBN-13: 1470437740

DOWNLOAD EBOOK

This volume contains the proceedings of the Second Mid-Atlantic Topology Conference, held from March 12–13, 2016, at Johns Hopkins University in Baltimore, Maryland. The focus of the conference, and subsequent papers, was on applications of innovative methods from homotopy theory in category theory, algebraic geometry, and related areas, emphasizing the work of younger researchers in these fields.


Noncommutative Cosmology

Noncommutative Cosmology

Author: Matilde Marcolli

Publisher: World Scientific

Published: 2017-12-26

Total Pages: 292

ISBN-13: 9813202866

DOWNLOAD EBOOK

Modified gravity models play an important role in contemporary theoretical cosmology. The present book proposes a novel approach to the topic based on techniques from noncommutative geometry, especially the spectral action functional as a gravity model. The book discusses applications to early universe models and slow-roll inflation models, to the problem of cosmic topology, to non-isotropic cosmologies like mixmaster universes and Bianchi IX gravitational instantons, and to multifractal structures in cosmology.Relations between noncommutative and algebro-geometric methods in cosmology is also discussed, including the occurrence of motives, periods, and modular forms in spectral models of gravity.


Hodge Theory and Classical Algebraic Geometry

Hodge Theory and Classical Algebraic Geometry

Author: Gary Kennedy

Publisher: American Mathematical Soc.

Published: 2015-08-27

Total Pages: 148

ISBN-13: 1470409909

DOWNLOAD EBOOK

This volume contains the proceedings of a conference on Hodge Theory and Classical Algebraic Geometry, held May 13-15, 2013, at The Ohio State University, Columbus, OH. Hodge theory is a powerful tool for the study and classification of algebraic varieties. This volume surveys recent progress in Hodge theory, its generalizations, and applications. The topics range from more classical aspects of Hodge theory to modern developments in compactifications of period domains, applications of Saito's theory of mixed Hodge modules, and connections with derived category theory and non-commutative motives.


Noncommutative Geometry

Noncommutative Geometry

Author: Alain Connes

Publisher: Springer

Published: 2003-12-15

Total Pages: 364

ISBN-13: 3540397027

DOWNLOAD EBOOK

Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.