Nonassociative Mathematics and its Applications

Nonassociative Mathematics and its Applications

Author: Petr Vojtěchovský

Publisher: American Mathematical Soc.

Published: 2019-01-14

Total Pages: 310

ISBN-13: 1470442450

DOWNLOAD EBOOK

Nonassociative mathematics is a broad research area that studies mathematical structures violating the associative law x(yz)=(xy)z. The topics covered by nonassociative mathematics include quasigroups, loops, Latin squares, Lie algebras, Jordan algebras, octonions, racks, quandles, and their applications. This volume contains the proceedings of the Fourth Mile High Conference on Nonassociative Mathematics, held from July 29–August 5, 2017, at the University of Denver, Denver, Colorado. Included are research papers covering active areas of investigation, survey papers covering Leibniz algebras, self-distributive structures, and rack homology, and a sampling of applications ranging from Yang-Mills theory to the Yang-Baxter equation and Laver tables. An important aspect of nonassociative mathematics is the wide range of methods employed, from purely algebraic to geometric, topological, and computational, including automated deduction, all of which play an important role in this book.


Non-Associative Algebra and Its Applications

Non-Associative Algebra and Its Applications

Author: Santos González

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 429

ISBN-13: 9401109907

DOWNLOAD EBOOK

This volume contains the proceedings of the Third International Conference on Non-Associative Algebra and Its Applications, held in Oviedo, Spain, July 12--17, 1993. The conference brought together specialists from all over the world who work in this interesting and active field, which is currently enjoying much attention. All aspects of non-associative algebra are covered. Topics range from purely mathematical subjects to a wide spectrum of applications, and from state-of-the-art articles to overview papers. This collection will point the way for further research for many years to come. The volume is of interest to researchers in mathematics as well as those whose work involves the application of non-associative algebra in such areas as physics, biology and genetics.


An Introduction to Nonassociative Algebras

An Introduction to Nonassociative Algebras

Author: Richard D. Schafer

Publisher: Courier Dover Publications

Published: 2017-11-15

Total Pages: 177

ISBN-13: 0486164179

DOWNLOAD EBOOK

Concise graduate-level introductory study presents some of the important ideas and results in the theory of nonassociative algebras. Places particular emphasis on alternative and (commutative) Jordan algebras. 1966 edition.


Non-Associative Algebra and Its Applications

Non-Associative Algebra and Its Applications

Author: Lev Sabinin

Publisher: CRC Press

Published: 2006-01-13

Total Pages: 558

ISBN-13: 9780824726690

DOWNLOAD EBOOK

With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences. This book covers material such as Jordan superalgebras, nonassociative deformations, nonassociative generalization of Hopf algebras, the structure of free algebras, derivations of Lie algebras, and the identities of Albert algebra. It also includes applications of smooth quasigroups and loops to differential geometry and relativity.


NonasSociative Algebra and Its Applications

NonasSociative Algebra and Its Applications

Author: R Costa

Publisher: CRC Press

Published: 2019-05-20

Total Pages: 492

ISBN-13: 0429529996

DOWNLOAD EBOOK

A collection of lectures presented at the Fourth International Conference on Nonassociative Algebra and its Applications, held in Sao Paulo, Brazil. Topics in algebra theory include alternative, Bernstein, Jordan, lie, and Malcev algebras and superalgebras. The volume presents applications to population genetics theory, physics, and more.


Associative and Non-Associative Algebras and Applications

Associative and Non-Associative Algebras and Applications

Author: Mercedes Siles Molina

Publisher: Springer Nature

Published: 2020-01-02

Total Pages: 338

ISBN-13: 3030352560

DOWNLOAD EBOOK

This book gathers together selected contributions presented at the 3rd Moroccan Andalusian Meeting on Algebras and their Applications, held in Chefchaouen, Morocco, April 12-14, 2018, and which reflects the mathematical collaboration between south European and north African countries, mainly France, Spain, Morocco, Tunisia and Senegal. The book is divided in three parts and features contributions from the following fields: algebraic and analytic methods in associative and non-associative structures; homological and categorical methods in algebra; and history of mathematics. Covering topics such as rings and algebras, representation theory, number theory, operator algebras, category theory, group theory and information theory, it opens up new avenues of study for graduate students and young researchers. The findings presented also appeal to anyone interested in the fields of algebra and mathematical analysis.


Non-Associative Algebra and Its Applications

Non-Associative Algebra and Its Applications

Author: Lev Sabinin

Publisher: CRC Press

Published: 2006-01-13

Total Pages: 553

ISBN-13: 1420003453

DOWNLOAD EBOOK

With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences.


Non-Associative Normed Algebras: Volume 1, The Vidav–Palmer and Gelfand–Naimark Theorems

Non-Associative Normed Algebras: Volume 1, The Vidav–Palmer and Gelfand–Naimark Theorems

Author: Miguel Cabrera García

Publisher: Cambridge University Press

Published: 2014-07-31

Total Pages: 735

ISBN-13: 1139992775

DOWNLOAD EBOOK

This first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This first volume focuses on the non-associative generalizations of (associative) C*-algebras provided by the so-called non-associative Gelfand–Naimark and Vidav–Palmer theorems, which give rise to alternative C*-algebras and non-commutative JB*-algebras, respectively. The relationship between non-commutative JB*-algebras and JB*-triples is also fully discussed. The second volume covers Zel'manov's celebrated work in Jordan theory to derive classification theorems for non-commutative JB*-algebras and JB*-triples, as well as other topics. The book interweaves pure algebra, geometry of normed spaces, and complex analysis, and includes a wealth of historical comments, background material, examples and exercises. The authors also provide an extensive bibliography.


Introduction to Octonion and Other Non-Associative Algebras in Physics

Introduction to Octonion and Other Non-Associative Algebras in Physics

Author: Susumu Okubo

Publisher: Cambridge University Press

Published: 1995-08-03

Total Pages: 152

ISBN-13: 0521472156

DOWNLOAD EBOOK

In this book, the author aims to familiarize researchers and graduate students in both physics and mathematics with the application of non-associative algebras in physics.Topics covered by the author range from algebras of observables in quantum mechanics, angular momentum and octonions, division algebra, triple-linear products and YangSHBaxter equations. The author also covers non-associative gauge theoretic reformulation of Einstein's general relativity theory and so on. Much of the material found in this book is not available in other standard works.


Non-Associative Normed Algebras: Volume 2, Representation Theory and the Zel'manov Approach

Non-Associative Normed Algebras: Volume 2, Representation Theory and the Zel'manov Approach

Author: Miguel Cabrera García

Publisher: Cambridge University Press

Published: 2018-04-12

Total Pages: 759

ISBN-13: 1108570763

DOWNLOAD EBOOK

This first systematic account of the basic theory of normed algebras, without assuming associativity, includes many new and unpublished results and is sure to become a central resource for researchers and graduate students in the field. This second volume revisits JB*-triples, covers Zel'manov's celebrated work in Jordan theory, proves the unit-free variant of the Vidav–Palmer theorem, and develops the representation theory of alternative C*-algebras and non-commutative JB*-algebras. This completes the work begun in the first volume, which introduced these algebras and discussed the so-called non-associative Gelfand–Naimark and Vidav–Palmer theorems. This book interweaves pure algebra, geometry of normed spaces, and infinite-dimensional complex analysis. Novel proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, and an extensive bibliography.