Non-Newtonian fluid behaviour; Rheometry for non-Newtonian fluids; Flow in pipes and conduits of non-circular cross-sections; Flow of multi-phase mixtures in pipes; Particulate systems; Heat transfer characteristics of non-Newtonian fluids in pipes; Momentum, heat and mass transfer in boundary layers; Liquid mixing.
Non-Newtonian materials are encountered in virtually all of the chemical and process industries and a full understanding of their nature and flow characteristics is an essential requirement for engineers and scientists involved in their formulation and handling. This book will bridge the gap between much of the highly theoretical and mathematically complex work of the rheologist and the practical needs of those who have to design and operate plants in which these materials are handled and processed. At the same time, numerous references are included for the benefit of those who need to delve more deeply into the subject.The starting point for any work on non-newtonian fluids is their characterisation over the range of conditions to which they are likely to be subjected during manufacture or utilisation, and this topic is treated early on in the book in a chapter commissioned from an expert in the field of rheological measurements. Coverage of topics is extensive and this book offers a unique and rich selection of material including the flow of single phase and multiphase mixtures in pipes, in packed and fluidised bed systems, heat and mass transfer in boundary layers and in simple duct flows, and mixing etc.An important and novel feature of the book is the inclusion of a wide selection of worked examples to illustrate the methods of calculation. It also incorporates a large selection of problems for the reader to tackle himself.
This book bridges the gap between the theoretical work of the rheologist, and the practical needs of those who have to design and operate the systems in which these materials are handled or processed. It is an established and important reference for senior level mechanical engineers, chemical and process engineers, as well as any engineer or scientist who needs to study or work with these fluids, including pharmaceutical engineers, mineral processing engineers, medical researchers, water and civil engineers. This new edition covers a considerably broader range of topics than its predecessor, including computational fluid dynamics modelling techniques, liquid/solid flows and applications to areas such as food processing, among others. * Written by two of the world's leading experts, this is the only dedicated non-Newtonian flow reference in print. * Since first publication significant advances have been made in almost all areas covered in this book, which are incorporated in the new edition, including developments in CFD and computational techniques, velocity profiles in pipes, liquid/solid flows and applications to food processing, and new heat/mass transfer methods and models. * Covers both basic rheology and the fluid mechanics of NN fluids ? a truly self-contained reference for anyone studying or working with the processing and handling of fluids
Chemical Engineering and Chemical Process Technology is a theme component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty Encyclopedias. Chemical engineering is a branch of engineering, dealing with processes in which materials undergo changes in their physical or chemical state. These changes may concern size, energy content, composition and/or other application properties. Chemical engineering deals with many processes belonging to chemical industry or related industries (petrochemical, metallurgical, food, pharmaceutical, fine chemicals, coatings and colors, renewable raw materials, biotechnological, etc.), and finds application in manufacturing of such products as acids, alkalis, salts, fuels, fertilizers, crop protection agents, ceramics, glass, paper, colors, dyestuffs, plastics, cosmetics, vitamins and many others. It also plays significant role in environmental protection, biotechnology, nanotechnology, energy production and sustainable economical development. The Theme on Chemical Engineering and Chemical Process Technology deals, in five volumes and covers several topics such as: Fundamentals of Chemical Engineering; Unit Operations – Fluids; Unit Operations – Solids; Chemical Reaction Engineering; Process Development, Modeling, Optimization and Control; Process Management; The Future of Chemical Engineering; Chemical Engineering Education; Main Products, which are then expanded into multiple subtopics, each as a chapter. These five volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.
Metal foams are at the forefront of technological development for the automotive, aerospace, and other weight-dependent industries. They are formed by various methods, but the key facet of their manufacture is the inclusion of air or other gaseous pockets in the metal structure. The fact that gas pockets are present in their structure provides an obvious weight advantage over traditionally cast or machined solid metal components. The unique structure of metal foams also opens up more opportunities to improve on more complex methods of producing parts with space inclusions such as sand-casting. This guide provides information on the advantages metal foams possess, and the applications for which they may prove suitable. Offers a concise description of metal foams, their manufacture, and their advantages in industry Provides engineers with answers to pertinent questions surrounding metal foams Satisfies a major need in the market for information on the properties, performance, and applications of these materials.
Applications of Heat, Mass and Fluid Boundary Layers brings together the latest research on boundary layers where there has been remarkable advancements in recent years. This book highlights relevant concepts and solutions to energy issues and environmental sustainability by combining fundamental theory on boundary layers with real-world industrial applications from, among others, the thermal, nuclear and chemical industries. The book's editors and their team of expert contributors discuss many core themes, including advanced heat transfer fluids and boundary layer analysis, physics of fluid motion and viscous flow, thermodynamics and transport phenomena, alongside key methods of analysis such as the Merk-Chao-Fagbenle method. This book's multidisciplinary coverage will give engineers, scientists, researchers and graduate students in the areas of heat, mass, fluid flow and transfer a thorough understanding of the technicalities, methods and applications of boundary layers, with a unified approach to energy, climate change and a sustainable future. - Presents up-to-date research on boundary layers with very practical applications across a diverse mix of industries - Includes mathematical analysis to provide detailed explanation and clarity - Provides solutions to global energy issues and environmental sustainability
This book is an undertaking of a pioneering work of uniting three vast fields of interfacial phenomena, rheology and fluid mechanics within the framework of solid-liquid two phase flow. No wonder, much finer books will be written in the future as the visionary aims of many nations in combining molecular chemistry, biology, transport and interfacial phenomena for the fundamental understanding of processes and capabilities of new materials will be achieved. Solid-liquid systems where solid particles with a wide range of physical properties, sizes ranging from nano- to macro- scale and concentrations varying from very dilute to highly concentrated, are suspended in liquids of different rheological behavior flowing in various regimes are taken up in this book. Interactions among solid particles in molecular scale are extended to aggregations in the macro scale and related to settling, flow and rheological behavior of the suspensions in a coherent, sequential manner. The classical concept of solid particles is extended to include nanoparticles, colloids, microorganisms and cellular materials. The flow of these systems is investigated under pressure, electrical, magnetic and chemical driving forces in channels ranging from macro-scale pipes to micro channels. Complementary separation and mixing processes are also taken under consideration with micro- and macro-scale counterparts.- Up-to-date including emerging technologies- Coherent, sequential approach- Wide scope: microorganisms, nanoparticles, polymer solutions, minerals, wastewater sludge, etc- All flow conditions, settling and non-settling particles, non-Newtonian flow, etc- Processes accompanying conveying in channels, such as sedimentation, separation, mixing
Discover the cutting-edge in multiphase flows used in the process industries In Multiphase Flows for Process Industries: Fundamentals and Applications, a team of accomplished chemical engineers delivers an insightful and complete treatment of the state-of-the-art in commonly encountered multiphase flows in the process industries. After discussing the theoretical background, experimental methods, and computational methods applicable to multiphase flows, the authors explore specific examples from the process industries. The book covers a wide range of multiphase flows, including gas-solid fluidized beds and flows with phase change. It also provides direction on how to use current advances in the field to realize efficient and optimized processes. Filling the gap between theory and practice, this unique reference also includes: A thorough introduction to multiphase flows and the process industry Practical discussions of flow regimes, lower order models and correlations, and the chronological development of mathematical models for multiphase flows Comprehensive explorations of experimental methods for characterizing multiphase flows, including flow imaging and visualization In-depth examinations of computational models for simulating multiphase flows Perfect for chemical and process engineers, Multiphase Flows for Process Industries: Fundamentals and Applications is required reading for graduate and doctoral students in the engineering sciences, as well as professionals in the chemical industry.
The Instrument and Automation Engineers’ Handbook (IAEH) is the Number 1 process automation handbook in the world. The two volumes in this greatly expanded Fifth Edition deal with measurement devices and analyzers. Volume one, Measurement and Safety, covers safety sensors and the detectors of physical properties, while volume two, Analysis and Analysis, describes the measurement of such analytical properties as composition. Complete with 245 alphabetized chapters and a thorough index for quick access to specific information, the IAEH, Fifth Edition is a must-have reference for instrument and automation engineers working in the chemical, oil/gas, pharmaceutical, pollution, energy, plastics, paper, wastewater, food, etc. industries.
The Instrument and Automation Engineers’ Handbook (IAEH) is the #1 process automation handbook in the world. Volume two of the Fifth Edition, Analysis and Analyzers, describes the measurement of such analytical properties as composition. Analysis and Analyzers is an invaluable resource that describes the availability, features, capabilities, and selection of analyzers used for determining the quality and compositions of liquid, gas, and solid products in many processing industries. It is the first time that a separate volume is devoted to analyzers in the IAEH. This is because, by converting the handbook into an international one, the coverage of analyzers has almost doubled since the last edition. Analysis and Analyzers: Discusses the advantages and disadvantages of various process analyzer designs Offers application- and method-specific guidance for choosing the best analyzer Provides tables of analyzer capabilities and other practical information at a glance Contains detailed descriptions of domestic and overseas products, their features, capabilities, and suppliers, including suppliers’ web addresses Complete with 82 alphabetized chapters and a thorough index for quick access to specific information, Analysis and Analyzers is a must-have reference for instrument and automation engineers working in the chemical, oil/gas, pharmaceutical, pollution, energy, plastics, paper, wastewater, food, etc. industries. About the eBook The most important new feature of the IAEH, Fifth Edition is its availability as an eBook. The eBook provides the same content as the print edition, with the addition of thousands of web addresses so that readers can reach suppliers or reference books and articles on the hundreds of topics covered in the handbook. This feature includes a complete bidders' list that allows readers to issue their specifications for competitive bids from any or all potential product suppliers.