Non-Homogeneous Boundary Value Problems and Applications

Non-Homogeneous Boundary Value Problems and Applications

Author: Jacques Louis Lions

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 375

ISBN-13: 3642651615

DOWNLOAD EBOOK

1. We describe, at first in a very formaI manner, our essential aim. n Let m be an op en subset of R , with boundary am. In m and on am we introduce, respectively, linear differential operators P and Qj' 0 ~ i ~ 'V. By "non-homogeneous boundary value problem" we mean a problem of the following type: let f and gj' 0 ~ i ~ 'v, be given in function space s F and G , F being a space" on m" and the G/ s spaces" on am" ; j we seek u in a function space u/t "on m" satisfying (1) Pu = f in m, (2) Qju = gj on am, 0 ~ i ~ 'v«])). Qj may be identically zero on part of am, so that the number of boundary conditions may depend on the part of am considered 2. We take as "working hypothesis" that, for fEF and gjEG , j the problem (1), (2) admits a unique solution u E U/t, which depends 3 continuously on the data . But for alllinear probIems, there is a large number of choiees for the space s u/t and {F; G} (naturally linke d together). j Generally speaking, our aim is to determine families of spaces 'ft and {F; G}, associated in a "natural" way with problem (1), (2) and con j venient for applications, and also all possible choiees for u/t and {F; G} j in these families.


Non-Homogeneous Boundary Value Problems and Applications

Non-Homogeneous Boundary Value Problems and Applications

Author: Jacques Louis Lions

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 255

ISBN-13: 3642652174

DOWNLOAD EBOOK

I. In this second volume, we continue at first the study of non homogeneous boundary value problems for particular classes of evolu tion equations. 1 In Chapter 4 , we study parabolic operators by the method of Agranovitch-Vishik [lJ; this is step (i) (Introduction to Volume I, Section 4), i.e. the study of regularity. The next steps: (ii) transposition, (iii) interpolation, are similar in principle to those of Chapter 2, but involve rather considerable additional technical difficulties. In Chapter 5, we study hyperbolic operators or operators well defined in thesense of Petrowski or Schroedinger. Our regularity results (step (i)) seem to be new. Steps (ii) and (iii) are all3.logous to those of the parabolic case, except for certain technical differences. In Chapter 6, the results of Chapter'> 4 and 5 are applied to the study of optimal control problems for systems governed by evolution equations, when the control appears in the boundary conditions (so that non-homogeneous boundary value problems are the basic tool of this theory). Another type of application, to the characterization of "all" well-posed problems for the operators in question, is given in the Ap pendix. Still other applications, for example to numerical analysis, will be given in Volume 3.


Partial Differential Equations and Boundary-Value Problems with Applications

Partial Differential Equations and Boundary-Value Problems with Applications

Author: Mark A. Pinsky

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 545

ISBN-13: 0821868896

DOWNLOAD EBOOK

Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.


Boundary Value Problems for Analytic Functions

Boundary Value Problems for Analytic Functions

Author: Jian-Ke Lu

Publisher: World Scientific

Published: 1993

Total Pages: 484

ISBN-13: 9789810210205

DOWNLOAD EBOOK

This book deals with boundary value problems for analytic functions with applications to singular integral equations. New and simpler proofs of certain classical results such as the Plemelj formula, the Privalov theorem and the Poincar‚-Bertrand formula are given. Nearly one third of this book contains the author's original works, most of which have not been published in English before and, hence, were previously unknown to most readers in the world.It consists of 7 chapters together with an appendix: Chapter I describes the basic knowledge on Cauchy-type integrals and Cauchy principal value integrals; Chapters II and III study, respectively, fundamental boundary value problems and their applications to singular integral equations for closed contours; Chapters IV and V discuss the same problems for curves with nodes (including open arcs); Chaper VI deals with similar problems for systems of functions; Chapter VII is concerned with some miscellaneous problems and the Appendix contains some basic results on Fredholm integral equations. In most sections, there are carefully selected sets of exercises, some of which supplement the text of the sections; answers/hints are also given for some of these exercises.For graduate students or seniors, all the 7 chapters can be used for a full year course, while the first 3 chapters may be used for a one-semester course.


Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems

Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems

Author: Dumitru Motreanu

Publisher: Springer Science & Business Media

Published: 2013-11-19

Total Pages: 465

ISBN-13: 1461493234

DOWNLOAD EBOOK

This book focuses on nonlinear boundary value problems and the aspects of nonlinear analysis which are necessary to their study. The authors first give a comprehensive introduction to the many different classical methods from nonlinear analysis, variational principles, and Morse theory. They then provide a rigorous and detailed treatment of the relevant areas of nonlinear analysis with new applications to nonlinear boundary value problems for both ordinary and partial differential equations. Recent results on the existence and multiplicity of critical points for both smooth and nonsmooth functional, developments on the degree theory of monotone type operators, nonlinear maximum and comparison principles for p-Laplacian type operators, and new developments on nonlinear Neumann problems involving non-homogeneous differential operators appear for the first time in book form. The presentation is systematic, and an extensive bibliography and a remarks section at the end of each chapter highlight the text. This work will serve as an invaluable reference for researchers working in nonlinear analysis and partial differential equations as well as a useful tool for all those interested in the topics presented.


Differential Equations with Boundary-value Problems

Differential Equations with Boundary-value Problems

Author: Dennis G. Zill

Publisher:

Published: 2005

Total Pages: 619

ISBN-13: 9780534420741

DOWNLOAD EBOOK

Now enhanced with the innovative DE Tools CD-ROM and the iLrn teaching and learning system, this proven text explains the "how" behind the material and strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This accessible text speaks to students through a wealth of pedagogical aids, including an abundance of examples, explanations, "Remarks" boxes, definitions, and group projects. This book was written with the student's understanding firmly in mind. Using a straightforward, readable, and helpful style, this book provides a thorough treatment of boundary-value problems and partial differential equations.


Energy Methods for Free Boundary Problems

Energy Methods for Free Boundary Problems

Author: S.N. Antontsev

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 338

ISBN-13: 1461200911

DOWNLOAD EBOOK

For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ford 1974, Pavia 1979, Durham 1978, Montecatini 1981, Maubuisson 1984, Irsee 1987, Montreal 1990, Toledo 1993, Zakopane 1995, Crete 1997, Chiba 1999). From the proceedings of these meetings, we can learn about the different kinds of mathematical areas that fall within the scope of free boundary problems. It is worth mentioning that the European Science Foundation supported a vast research project on free boundary problems from 1993 until 1999. The recent creation of the specialized journal Interfaces and Free Boundaries: Modeling, Analysis and Computation gives us an idea of the vitality of the subject and its present state of development. This book is a result of collaboration among the authors over the last 15 years.


Elementary Differential Equations with Boundary Value Problems

Elementary Differential Equations with Boundary Value Problems

Author: William F. Trench

Publisher: Thomson Brooks/Cole

Published: 2001

Total Pages: 764

ISBN-13:

DOWNLOAD EBOOK

Written in a clear and accurate language that students can understand, Trench's new book minimizes the number of explicitly stated theorems and definitions. Instead, he deals with concepts in a conversational style that engages students. He includes more than 250 illustrated, worked examples for easy reading and comprehension. One of the book's many strengths is its problems, which are of consistently high quality. Trench includes a thorough treatment of boundary-value problems and partial differential equations and has organized the book to allow instructors to select the level of technology desired. This has been simplified by using symbols, C and L, to designate the level of technology. C problems call for computations and/or graphics, while L problems are laboratory exercises that require extensive use of technology. Informal advice on the use of technology is included in several sections and instructors who prefer not to emphasize technology can ignore these exercises without interrupting the flow of material.