Non-Equilibrium Entropy and Irreversibility

Non-Equilibrium Entropy and Irreversibility

Author: C. Lindblad

Publisher: Springer Science & Business Media

Published: 2001-11-30

Total Pages: 184

ISBN-13: 9781402003202

DOWNLOAD EBOOK

The problem of deriving irreversible thermodynamics from the re versible microscopic dynamics has been on the agenda of theoreti cal physics for a century and has produced more papers than can be digested by any single scientist. Why add to this too long list with yet another work? The goal is definitely not to give a gen eral review of previous work in this field. My ambition is rather to present an approach differing in some key aspects from the stan dard treatments, and to develop it as far as possible using rather simple mathematical tools (mainly inequalities of various kinds). However, in the course of this work I have used a large number of results and ideas from the existing literature, and the reference list contains contributions from many different lines of research. As a consequence the reader may find the arguments a bit difficult to follow without some previous exposure to this set of problems.


Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis

Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis

Author: V. Parmon

Publisher: Elsevier

Published: 2009-09-26

Total Pages: 340

ISBN-13: 0080931960

DOWNLOAD EBOOK

Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis consists of materials adapted from lectures on the thermodynamics of nonequilibrium processes that have been taught at the Department of Natural Sciences of Novosibirsk State University since 1995. The thermodynamics of nonequilibrium processes traditionally required students to have a strong background in physics. However, the materials featured in this volume allow anyone with knowledge in classical thermodynamics of equilibrium processes and traditional chemical kinetics to understand the subject. Topics discussed include systems in the thermodynamics of irreversible processes; thermodynamics of systems that are close to and far from equilibrium; thermodynamics of catalysts; the application of nonequilibrium thermodynamics to material science; and the relationship between entropy and information. This book will be helpful for research into complex chemical transformations, particularly catalytic transformations. - Applies simple approaches of non-equilibrium thermodynamics to analyzing properties of chemically reactive systems - Covers systems far from equilibrium, allowing the consideration of most chemically reactive systems of a chemical or biological nature - This approach resolves many complicated problems in the teaching of chemical kinetics


Non-Equilibrium Statistical Mechanics

Non-Equilibrium Statistical Mechanics

Author: Ilya Prigogine

Publisher: Courier Dover Publications

Published: 2017-03-17

Total Pages: 337

ISBN-13: 0486815552

DOWNLOAD EBOOK

Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.


Nonequilibrium Thermodynamics

Nonequilibrium Thermodynamics

Author: Yasar Demirel

Publisher: Newnes

Published: 2013-12-16

Total Pages: 787

ISBN-13: 0444595813

DOWNLOAD EBOOK

Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. Nonequilibrium Thermodynamics, Third Edition emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems. - Informs and updates on all the latest developments in the field - Contributions from leading authorities and industry experts - A useful text for seniors and graduate students from diverse engineering and science programs to analyze some nonequilibrium, coupled, evolutionary, stochastic, and dissipative processes - Highlights fundamentals of equilibrium thermodynamics, transport processes and chemical reactions - Expands the theory of nonequilibrium thermodynamics and its use in coupled transport processes and chemical reactions in physical, chemical, and biological systems - Presents a unified analysis for transport and rate processes in various time and space scales - Discusses stochastic approaches in thermodynamic analysis including fluctuation and information theories - Has 198 fully solved examples and 287 practice problems - An Instructor Resource containing the Solution Manual can be obtained from the author: [email protected]


Nonequilibrium and Irreversibility

Nonequilibrium and Irreversibility

Author: Giovanni Gallavotti

Publisher: Springer

Published: 2014-06-10

Total Pages: 261

ISBN-13: 3319067583

DOWNLOAD EBOOK

This book concentrates on the properties of the stationary states in chaotic systems of particles or fluids, leaving aside the theory of the way they can be reached. The stationary states of particles or of fluids (understood as probability distributions on microscopic configurations or on the fields describing continua) have received important new ideas and data from numerical simulations and reviews are needed. The starting point is to find out which time invariant distributions come into play in physics. A special feature of this book is the historical approach. To identify the problems the author analyzes the papers of the founding fathers Boltzmann, Clausius and Maxwell including translations of the relevant (parts of) historical documents. He also establishes a close link between treatment of irreversible phenomena in statistical mechanics and the theory of chaotic systems at and beyond the onset of turbulence as developed by Sinai, Ruelle, Bowen (SRB) and others: the author gives arguments intending to support strongly the viewpoint that stationary states in or out of equilibrium can be described in a unified way. In this book it is the "chaotic hypothesis", which can be seen as an extension of the classical ergodic hypothesis to non equilibrium phenomena, that plays the central role. It is shown that SRB - often considered as a kind of mathematical playground with no impact on physical reality - has indeed a sound physical interpretation; an observation which to many might be new and a very welcome insight. Following this, many consequences of the chaotic hypothesis are analyzed in chapter 3 - 4 and in chapter 5 a few applications are proposed. Chapter 6 is historical: carefully analyzing the old literature on the subject, especially ergodic theory and its relevance for statistical mechanics; an approach which gives the book a very personal touch. The book contains an extensive coverage of current research (partly from the authors and his coauthors publications) presented in enough detail so that advanced students may get the flavor of a direction of research in a field which is still very much alive and progressing. Proofs of theorems are usually limited to heuristic sketches privileging the presentation of the ideas and providing references that the reader can follow, so that in this way an overload of this text with technical details could be avoided.


Non-equilibrium Statistical Thermodynamics

Non-equilibrium Statistical Thermodynamics

Author: Xavier de Hemptinne

Publisher: World Scientific

Published: 1992

Total Pages: 304

ISBN-13: 9789810209261

DOWNLOAD EBOOK

This book stresses the role of uncorrelated exchange of properties between macroscopic systems and their surroundings as the only source of dynamic irreversibility. To that end, fundamentals of statistical thermodynamics extended to the non-equilibrium are worked out carefully. The principles are then applied to selected problems in classical fluid dynamics. Transport coefficients are first derived from basic laws. This is followed by a full discussion of transitions to dissipative structures in selected systems far removed from equilibrium (B‚nard and Taylor vortices, calculation of the critical Reynolds number for transition to turbulence in Poiseuille flow). The final part focuses on interaction of matter with light. Fundamentals are extended towards quantum-mechanical systems. Applied to coherent radiation and its interaction with matter, the proposed thermodynamic treatment introduces an original discussion into the quantum nature of micro-physics.The book questions and reconsiders a deeply rooted paradigm in macroscopic dynamics concerning the cause of irreversibility. The new proposal is illustrated by application to a couple of well documented non-equilibrium domains, namely fluid dynamics and laser physics.


Understanding Non-equilibrium Thermodynamics

Understanding Non-equilibrium Thermodynamics

Author: Georgy Lebon

Publisher: Springer Science & Business Media

Published: 2008-01-12

Total Pages: 331

ISBN-13: 3540742522

DOWNLOAD EBOOK

Discover the many facets of non-equilibrium thermodynamics. The first part of this book describes the current thermodynamic formalism recognized as the classical theory. The second part focuses on different approaches. Throughout the presentation, the emphasis is on problem-solving applications. To help build your understanding, some problems have been analyzed using several formalisms to underscore their differences and their similarities.


Extended Irreversible Thermodynamics

Extended Irreversible Thermodynamics

Author: David Jou

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 320

ISBN-13: 3642974309

DOWNLOAD EBOOK

Classical irreversible thermodynamics, as developed by Onsager, Prigogine and many other authors, is based on the local-equilibrium hypothesis. Out of equilibrium, any system is assumed to depend locally on the same set of variables as when it is in eqUilibrium. This leads to a formal thermody namic structure identical to that of eqUilibrium: intensive parameters such as temperature, pressure and chemical potentials are well-defined quantities keeping their usual meaning, thermodynamic potentials are derived as Leg endre transformations and all equilibrium thermodynamic relations retain their validity. The theory based on this hypothesis has turned out to be very useful and has achieved a number of successes in many practical situations. of interest in going However, the recent decade has witnessed a surge beyond the classical formulation. There are several reasons for this. One of them is the development of experimental methods able to deal with the response of systems to high-frequency and short-wavelength perturbations, such as ultrasound propagation and light and neutron scattering. The ob served results have led to generalizations of the classical hydrodynamical theories, by including memory functions or generalized transport coefficients depending on the frequency and the wavevector. This field has generated impressive progress in non-equilibrium statistical mechanics, but for the moment it has not brought about a parallel development in non-equilibrium thermodynamics. An extension of thermodynamics compatible with gener alized hydrodynamics therefore appears to be a natural subject of research.


Nonequilibrium Thermodynamics

Nonequilibrium Thermodynamics

Author: Yasar Demirel

Publisher: Elsevier

Published: 2007-10-10

Total Pages: 755

ISBN-13: 008055136X

DOWNLOAD EBOOK

Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and lead to instabilities, fluctuations, and evolutionary systems. This book explores the unifying role of thermodynamics in natural phenomena. Nonequilibrium Thermodynamics, Second Edition analyzes the transport processes of energy, mass, and momentum transfer processes, as well as chemical reactions. It considers various processes occurring simultaneously, and provides students with more realistic analysis and modeling by accounting possible interactions between them. This second edition updates and expands on the first edition by focusing on the balance equations of mass, momentum, energy, and entropy together with the Gibbs equation for coupled processes of physical, chemical, and biological systems. Every chapter contains examples and practical problems to be solved. This book will be effective in senior and graduate education in chemical, mechanical, systems, biomedical, tissue, biological, and biological systems engineering, as well as physical, biophysical, biological, chemical, and biochemical sciences. - Will help readers in understanding and modelling some of the coupled and complex systems, such as coupled transport and chemical reaction cycles in biological systems - Presents a unified approach for interacting processes - combines analysis of transport and rate processes - Introduces the theory of nonequilibrium thermodynamics and its use in simultaneously occurring transport processes and chemical reactions of physical, chemical, and biological systems - A useful text for students taking advanced thermodynamics courses