". T. Stafford -- The Goldie rank of a module " . R. Farkas -- Noetherian group rings: An exercise in creating folklore and intuition " . C. Jantzen -- Primitive ideals in the enveloping algebra of a semisimple Lie algebra " . J. Enright -- Representation theory of semisimple Lie algebras " .-E. Björk -- Filtered Noetherian rings " . Rentschler -- Primitive ideals in enveloping algebras.
This is a reprinted edition of a work that was considered the definitive account in the subject area upon its initial publication by J. Wiley & Sons in 1987. It presents, within a wider context, a comprehensive account of noncommutative Noetherian rings. The author covers the major developments from the 1950s, stemming from Goldie's theorem and onward, including applications to group rings, enveloping algebras of Lie algebras, PI rings, differential operators, and localization theory. The book is not restricted to Noetherian rings, but discusses wider classes of rings where the methods apply more generally. In the current edition, some errors were corrected, a number of arguments have been expanded, and the references were brought up to date. This reprinted edition will continue to be a valuable and stimulating work for readers interested in ring theory and its applications to other areas of mathematics.
This introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. New material includes the basic types of quantum groups, which then serve as test cases for the theory developed.
This volume consists of twenty-one articles by many of the most prominent researchers in non-Noetherian commutative ring theory. The articles combine in various degrees surveys of past results, recent results that have never before seen print, open problems, and an extensive bibliography. One hundred open problems supplied by the authors have been collected in the volume's concluding chapter. The entire collection provides a comprehensive survey of the development of the field over the last ten years and points to future directions of research in the area. Audience: Researchers and graduate students; the volume is an appropriate source of material for several semester-long graduate-level seminars and courses.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Gad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of s9phistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Translated from the popular French edition, this book offers a detailed introduction to various basic concepts, methods, principles, and results of commutative algebra. It takes a constructive viewpoint in commutative algebra and studies algorithmic approaches alongside several abstract classical theories. Indeed, it revisits these traditional topics with a new and simplifying manner, making the subject both accessible and innovative. The algorithmic aspects of such naturally abstract topics as Galois theory, Dedekind rings, Prüfer rings, finitely generated projective modules, dimension theory of commutative rings, and others in the current treatise, are all analysed in the spirit of the great developers of constructive algebra in the nineteenth century. This updated and revised edition contains over 350 well-arranged exercises, together with their helpful hints for solution. A basic knowledge of linear algebra, group theory, elementary number theory as well as the fundamentals of ring and module theory is required. Commutative Algebra: Constructive Methods will be useful for graduate students, and also researchers, instructors and theoretical computer scientists.
" Exploring commutative algebra's connections with and applications to topological algebra and algebraic geometry, Commutative Ring Theory covers the spectra of rings chain conditions, dimension theory, and Jaffard rings fiber products group rings, semigroup rings, and graded rings class groups linear groups integer-valued polynomials rings of finite fractions big Cohen-Macaulay modules and much more!"
This book is an introduction to the theory of rings and modules that goes beyond what one normally obtains in a graduate course in abstract algebra. In addition to the presentation of standard topics in ring and module theory, it also covers category theory, homological algebra and even more specialized topics like injective envelopes and proj
This book provides an introduction to the basics and recent developments of commutative algebra. A glance at the contents of the first five chapters shows that the topics covered are ones that usually are included in any commutative algebra text. However, the contents of this book differ significantly from most commutative algebra texts: namely, its treatment of the Dedekind–Mertens formula, the (small) finitistic dimension of a ring, Gorenstein rings, valuation overrings and the valuative dimension, and Nagata rings. Going further, Chapter 6 presents w-modules over commutative rings as they can be most commonly used by torsion theory and multiplicative ideal theory. Chapter 7 deals with multiplicative ideal theory over integral domains. Chapter 8 collects various results of the pullbacks, especially Milnor squares and D+M constructions, which are probably the most important example-generating machines. In Chapter 9, coherent rings with finite weak global dimensions are probed, and the local ring of weak global dimension two is elaborated on by combining homological tricks and methods of star operation theory. Chapter 10 is devoted to the Grothendieck group of a commutative ring. In particular, the Bass–Quillen problem is discussed. Finally, Chapter 11 aims to introduce relative homological algebra, especially where the related concepts of integral domains which appear in classical ideal theory are defined and investigated by using the class of Gorenstein projective modules. Each section of the book is followed by a selection of exercises of varying degrees of difficulty. This book will appeal to a wide readership from graduate students to academic researchers who are interested in studying commutative algebra.