Designed to make the material easy to understand, this clear and thorough book emphasizes the practical application of systems engineering to the design and analysis of feedback systems. Nise applies control systems theory and concepts to current real-world problems, showing readers how to build control systems that can support today's advanced technology.
Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.
An up-to-date guide for using massive amounts of data and novel technologies to design, build, and maintain better systems engineering Systems Engineering in the Fourth Industrial Revolution: Big Data, Novel Technologies, and Modern Systems Engineering offers a guide to the recent changes in systems engineering prompted by the current challenging and innovative industrial environment called the Fourth Industrial Revolution—INDUSTRY 4.0. This book contains advanced models, innovative practices, and state-of-the-art research findings on systems engineering. The contributors, an international panel of experts on the topic, explore the key elements in systems engineering that have shifted towards data collection and analytics, available and used in the design and development of systems and also in the later life-cycle stages of use and retirement. The contributors address the issues in a system in which the system involves data in its operation, contrasting with earlier approaches in which data, models, and algorithms were less involved in the function of the system. The book covers a wide range of topics including five systems engineering domains: systems engineering and systems thinking; systems software and process engineering; the digital factory; reliability and maintainability modeling and analytics; and organizational aspects of systems engineering. This important resource: Presents new and advanced approaches, methodologies, and tools for designing, testing, deploying, and maintaining advanced complex systems Explores effective evidence-based risk management practices Describes an integrated approach to safety, reliability, and cyber security based on system theory Discusses entrepreneurship as a multidisciplinary system Emphasizes technical merits of systems engineering concepts by providing technical models Written for systems engineers, Systems Engineering in the Fourth Industrial Revolution offers an up-to-date resource that contains the best practices and most recent research on the topic of systems engineering.
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory
Control systems engineering. Modeling physical systems: Differential equation. Transfer - function models. State models. Simulation. Stability. Performance criteria and some effects of feedback. Root-locuc techniques...