Catalyzed Carbon-Heteroatom Bond Formation

Catalyzed Carbon-Heteroatom Bond Formation

Author: Andrei K. Yudin

Publisher: John Wiley & Sons

Published: 2010-12-01

Total Pages: 541

ISBN-13: 3527633405

DOWNLOAD EBOOK

Written by an experienced editor widely acclaimed within the scientific community, this book covers everything fromo9xygen to nitrogen functionalities. From the contents: Palladium-Catalyzed Syntheses of Five-Member Saturated Heterocyclic and of Aromatic Heterodynes Palladium-Catalysis for Oxidative 1, 2-Difunctionalization of Alkenes Rhodium-Catalyzed Amination of C-H-Bonds Carbon-Heteroatom Bond Formation by RH(I)-Catalyzed Ring-Opening Reactions Transition Metal-Catalyzed Synthesis of Lactones and of Monocyclic and Fused Five-Membered Aromatic heterocycles the Formation of Carbon-Sulfur and Carbon-Selenium bonds by Substitution and Addition reactions catalyzed by Transition Metal Complexes New Reactions of Copper Acetylides Gold Catalyzed Addition of Nitrogen, Sulfur and Oxygen Nucleophiles to C-C Multiple Bonds. The result is an indispensable source of information for the Strategic Planning of the Synthetic routes for organic, catalytic and medicinal chemists, as well as chemists in industry.


Catalytic Methods for Carbon-carbon and Carbon-nitrogen Bond Formation

Catalytic Methods for Carbon-carbon and Carbon-nitrogen Bond Formation

Author: Stephen David Ramgren

Publisher:

Published: 2014

Total Pages: 511

ISBN-13:

DOWNLOAD EBOOK

This dissertation describes the study of metal-catalyzed cross-coupling reactions to construct carbon-carbon and carbon-heteroatom bonds. The key feature of much of this work is the use of inexpensive Ni and Fe catalysts to enable the coupling of unconventional electrophilic substrates, specifically aryl O-sulfamates and O-carbamates. The ability to use O-sulfamates and O-carbamates in catalytic processes is notable, as these substrates are readily derived from phenols and can be used for directed arene functionalization. Chapter one provides a summary of the efforts towards using alcohol-based solvents for the Suzuki-Miyaura cross-coupling reaction. Emphasis is placed on the cross-coupling of heterocycles, which are commonly encountered in natural product synthesis and in the pharmaceutical sector. Chapters two, three, and four describe carbon-nitrogen bond forming reactions. Chapter two pertains to the nickel-catalyzed amination of sulfamates, which culminated in the synthesis of the antibacterial drug, linezolid. Chapter three covers the amination of aryl O-carbamates and their use in sequential functionalization/site-selective cross-couplings. Chapter four describes a more user-friendly variant of the amination reaction, which relies on a bench-stable Ni(II) precatalyst, rather than a more commonly used Ni(0) precatalyst. Chapters five, six, and seven focus on carbon-carbon bond formation via Fe-, Ni- and Pd-mediated processes. Chapter five pertains to iron-catalyzed couplings of sulfamates and carbamates to generate sp2-sp3 carbon-carbon bonds. This method can be used to assemble sterically-congested frameworks. Chapter six describes the nickel-catalyzed Suzuki-Miyaura reactions of halides and phenol derivatives in `green' solvents, which was applied to the preparative scale assembly of bis(heterocycles) using low nickel catalyst loadings. Chapter seven pertains to the acetylation of arenes using palladium catalysis, which provides a simple and efficient means for the construction of a variety of aryl methyl ketones.


C-C Bond Activation

C-C Bond Activation

Author: Guangbin Dong

Publisher: Springer

Published: 2014-09-18

Total Pages: 265

ISBN-13: 364255055X

DOWNLOAD EBOOK

The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students


Carbon-Carbon and Carbon-Heteroatom

Carbon-Carbon and Carbon-Heteroatom

Author: Rakesh Kumar Sharma

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-08-22

Total Pages: 587

ISBN-13: 3110759594

DOWNLOAD EBOOK

Carbon-carbon and carbon-heteroatom bond-forming reactions are the backbone of synthetic organic chemistry. Scientists are constantly developing and improving these techniques in order to maximize the diversity of synthetically available molecules. These techniques must be developed in a sustainable manner in order to limit their environmental impact. This book highlights green carbon-carbon and carbon-heteroatom bond forming reactions.


Cleavage of Carbon-Carbon Single Bonds by Transition Metals

Cleavage of Carbon-Carbon Single Bonds by Transition Metals

Author: Masahiro Murakami

Publisher: John Wiley & Sons

Published: 2015-09-21

Total Pages: 292

ISBN-13: 352768011X

DOWNLOAD EBOOK

Edited by leading experts and pioneers in the field, this is the first up-to-date book on this hot topic. The authors provide synthetic chemists with different methods to activate carbon-carbon sigma bonds in organic molecules promoted by transition metal complexes. They explain the basic principles and strategies for carbon-carbon bond cleavage and highlight recently developed synthetic protocols based on this methodology. In so doing, they cover cleavage of C-C bonds in strained molecules, reactions involving elimination of carbon dioxide and ketones, reactions via retroallylation, and cleavage of C-C bonds of ketones and nitriles. The result is an excellent information source for researchers in academia and industry working in the field of synthetic organic chemistry, while equally serving as supplementary reading for advanced courses in organometallic chemistry and catalysis.


Metal Catalyzed Reductive C-C Bond Formation

Metal Catalyzed Reductive C-C Bond Formation

Author: Michael J. Krische

Publisher: Springer Science & Business Media

Published: 2007-07-20

Total Pages: 272

ISBN-13: 3540728783

DOWNLOAD EBOOK

TheprototypicalcatalyticreductiveC-Cbondformations,theFischer-Tropsch reaction [1] and alkene hydroformylation [2], were discovered in 1922 and 1938, respectively [3,4]. These processes, which involve reductive coupling to carbon monoxide, have long been applied to the industrial manufacture of commodity chemicals [5]. Notably, alkene hydroformylation, also known as the oxo-synthesis, has emerged as the largest volume application of homo- neous metal catalysis, accounting for the production of over 7 million metric tons of aldehyde annually. Despite the impact of these prototypical reductive C-C bond formations, this ?eld of research lay fallow for several decades. Eventually, the increased availability of mild terminal reductants, in part- ular silanes, led to a renaissance in the area of catalytic reductive C-C bond formation.Forexample,the'rstcatalyticreductiveC-Ccouplingsbeyond- droformylation, which involve the hydrosilylative dimerization of conjugated dienes [6-12], appeared in 1969 - approximately 16 years after the ?rst - ported metal-catalyzed alkene hydrosilylation [13]. Following these seminal studies, the ?eld of catalytic reductive C-C bond formation underwent exp- sivegrowth,culminatingintheemergenceofanevergrowingbodyofresearch encompassing a powerful set of transformations. To our knowledge, no thematic volumes devoted solely to metal-catalyzed reductive C-C bond formationhave been assembled. For the ?rst time, in this issue of Topics in Current Chemistry,wepresent acompilation ofmonographs from several leaders in this burgeoning area of research. This collection of reviews serves to capture the diversity of catalytic reductive C-C couplings presently available and, in turn, the remarkable range of reactivity embodied by such transformations. There is no indication that this ?eld has reached its zenithanditisthehopeofthepresentauthorthatthisvolumewillfuelfurther progress.


Development of Nickel-Catalyzed Cross-Coupling Reactions

Development of Nickel-Catalyzed Cross-Coupling Reactions

Author: Liana Hie

Publisher:

Published: 2016

Total Pages: 620

ISBN-13:

DOWNLOAD EBOOK

Transition metal-catalyzed cross-couplings provide a powerful means to assemble carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds. Although Pd catalysis is most commonly used in these transformations, Ni catalysis offers a valuable alternative due to the low cost and high reactivity of Ni. More importantly, Ni catalysis has proven effective for the activation of traditionally inert carbon-heteroatom bonds and therefore provides exciting opportunities with regard to chemical reactivity and synthetic applications. Chapter one, two, and three describe the development of practical cross-coupling methodologies. Chapter one explains the amination of aryl sulfamates and carbamates that relies on an air-stable Ni(II) precatalyst. Chapter two introduces the development of green cross-couplings of phenolic derivatives and aryl halides to form biaryls. Subsequently, the couplings of heterocycles, which are commonly encountered in natural product synthesis and in the pharmaceutical sector, are described. Chapter three describes the development of green cross-couplings of aryl sulfamates and chlorides to form aryl amines. Chapter four and seven concern the utility of amides as electrophilic cross-coupling partners. These traditionally unreactive moieties are activated by nickel and coupled to alcohols to form acyl C-O bonds. This study suggests that amides may serve as useful building blocks to construct carbon-carbon and carbon-heteroatom bonds. Chapter four describes the development of nickel-catalyzed activation of benzamides and chapter seven introduces the development of nickel-catalyzed activation of aliphatic amide derivatives. Chapter five describes the nickel-catalyzed activation of the acyl carbon-oxygen bonds of methyl esters through an oxidative addition process. The oxidative addition adducts, formed using nickel catalysis, undergo in situ trapping to provide anilide products. DFT calculations are used to support the proposed reaction mechanism, understand why decarbonylation does not occur competitively, and to elucidate the beneficial role of the substrate structure and Al(OtBu)3 additive on the kinetics and thermodynamics of the reaction. Chapter six focus on the nickel-catalyzed Heck cyclization for the construction of quaternary stereocenters. This transformation is demonstrated in the synthesis of 3,3-disubstituted oxindoles, which are prevalent motifs seen in bioactive molecules.


Carbon-Carbon ?-Bond Formation

Carbon-Carbon ?-Bond Formation

Author: G. Pattenden

Publisher: Elsevier

Published: 1992-09-08

Total Pages: 1209

ISBN-13: 008091246X

DOWNLOAD EBOOK

Volume 3 covers carbon-to-carbon single bond forming reactions involving sp3, sp2 and sp carbon centers, but only those which do not involve additions to C-X &pgr;-bonds. The volume first compares and contrasts the alkylation reactions of all types of sp3 carbon nucleophiles and also covers vinyl and alkynyl carbanions. Following on from Volume 2, a separate section covers Friedel-Crafts alkylation reactions, which is complemented by discussions of polyene cyclizations and electrophilic transannular cyclizations in synthesis. Coupling reactions leading to &agr;-bond formation, and involving all types of combinations ofsp3, sp2 and sp carbon centers are next covered, including those reactions based on pinacol, acyloin and phenol oxidative coupling reactions, and also the Kolbe reaction. Rearrangement reactions, leading to carbon-to-carbon &agr;-bond formation, are often used in a clever manner in synthesis. The volume includes all those rearrangement reactions based on intermediate carbonium ions and carbanions, and also includes the benzil-benzilic acid and the Wolff rearrangements. The volume closes with coverage of carbonylation reactions, and the use of carbene insertion reactions into the C-H bond in synthesis.


Rhodium-Catalyzed C-C Bond Formation Via Heteroatom-Directed C-H Bond Activation

Rhodium-Catalyzed C-C Bond Formation Via Heteroatom-Directed C-H Bond Activation

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Once considered the 'holy grail' of organometallic chemistry, synthetically useful reactions employing C-H bond activation have increasingly been developed and applied to natural product and drug synthesis over the past decade. The ubiquity and relative low cost of hydrocarbons makes C-H bond functionalization an attractive alternative to classical C-C bond forming reactions such as cross-coupling, which require organohalides and organometallic reagents. In addition to providing an atom economical alternative to standard cross - coupling strategies, C-H bond functionalization also reduces the production of toxic by-products, thereby contributing to the growing field of reactions with decreased environmental impact. In the area of C-C bond forming reactions that proceed via a C-H activation mechanism, rhodium catalysts stand out for their functional group tolerance and wide range of synthetic utility. Over the course of the last decade, many Rh-catalyzed methods for heteroatom-directed C-H bond functionalization have been reported and will be the focus of this review. Material appearing in the literature prior to 2001 has been reviewed previously and will only be introduced as background when necessary. The synthesis of complex molecules from relatively simple precursors has long been a goal for many organic chemists. The ability to selectively functionalize a molecule with minimal pre-activation can streamline syntheses and expand the opportunities to explore the utility of complex molecules in areas ranging from the pharmaceutical industry to materials science. Indeed, the issue of selectivity is paramount in the development of all C-H bond functionalization methods. Several groups have developed elegant approaches towards achieving selectivity in molecules that possess many sterically and electronically similar C-H bonds. Many of these approaches are discussed in detail in the accompanying articles in this special issue of Chemical Reviews. One approach that has seen widespread success involves the use of a proximal heteroatom that serves as a directing group for the selective functionalization of a specific C-H bond. In a survey of examples of heteroatom-directed Rh catalysis, two mechanistically distinct reaction pathways are revealed. In one case, the heteroatom acts as a chelator to bind the Rh catalyst, facilitating reactivity at a proximal site. In this case, the formation of a five-membered metallacycle provides a favorable driving force in inducing reactivity at the desired location. In the other case, the heteroatom initially coordinates the Rh catalyst and then acts to stabilize the formation of a metal-carbon bond at a proximal site. A true test of the utility of a synthetic method is in its application to the synthesis of natural products or complex molecules. Several groups have demonstrated the applicability of C-H bond functionalization reactions towards complex molecule synthesis. Target-oriented synthesis provides a platform to test the effectiveness of a method in unique chemical and steric environments. In this respect, Rh-catalyzed methods for C-H bond functionalization stand out, with several syntheses being described in the literature that utilize C-H bond functionalization in a key step. These syntheses are highlighted following the discussion of the method they employ.