A Practical Guide to the Highly Dynamic Area of Massively Parallel SequencingThe development of genome and transcriptome sequencing technologies has led to a paradigm shift in life science research and disease diagnosis and prevention. Scientists are now able to see how human diseases and phenotypic changes are connected to DNA mutation, polymorphi
Clinical Applications for Next Generation Sequencing provides readers with an outstanding postgraduate resource to learn about the translational use of NGS in clinical environments. Rooted in both medical genetics and clinical medicine, the book fills the gap between state-of-the-art technology and evidence-based practice, providing an educational opportunity for users to advance patient care by transferring NGS to the needs of real-world patients. The book builds an interface between genetic laboratory staff and clinical health workers to not only improve communication, but also strengthen cooperation. Users will find valuable tactics they can use to build a systematic framework for understanding the role of NGS testing in both common and rare diseases and conditions, from prenatal care, like chromosomal abnormalities, up to advanced age problems like dementia. - Fills the gap between state-of-the-art technology and evidence-based practice - Provides an educational opportunity which advances patient care through the transfer of NGS to real-world patient assessment - Promotes a practical tool that clinicians can apply directly to patient care - Includes a systematic framework for understanding the role of NGS testing in many common and rare diseases - Presents evidence regarding the important role of NGS in current diagnostic strategies
"Next-generation DNA sequencing (NGS) technology has revolutionized biomedical research, making complete genome sequencing an affordable and frequently used tool for a wide variety of research applications. This book provides a thorough introduction to the necessary informatics methods and tools for operating NGS instruments and analyzing NGS data"
Next generation sequencing (NGS) has surpassed the traditional Sanger sequencing method to become the main choice for large-scale, genome-wide sequencing studies with ultra-high-throughput production and a huge reduction in costs. The NGS technologies have had enormous impact on the studies of structural and functional genomics in all the life sciences. In this book, Next Generation Sequencing Advances, Applications and Challenges, the sixteen chapters written by experts cover various aspects of NGS including genomics, transcriptomics and methylomics, the sequencing platforms, and the bioinformatics challenges in processing and analysing huge amounts of sequencing data. Following an overview of the evolution of NGS in the brave new world of omics, the book examines the advances and challenges of NGS applications in basic and applied research on microorganisms, agricultural plants and humans. This book is of value to all who are interested in DNA sequencing and bioinformatics across all fields of the life sciences.
The goal of this book is to introduce the biological and technical aspects of next generation sequencing methods, as well as algorithms to assemble these sequences into whole genomes. The book is organized into two parts; part 1 introduces NGS methods and part 2 reviews assembly algorithms and gives a good insight to these methods for readers new to the field. Gathering information, about sequencing and assembly methods together, helps both biologists and computer scientists to get a clear idea about the field. Chapters will include information about new sequencing technologies such as ChIp-seq, ChIp-chip, and De Novo sequence assembly.
Written by leading experts from industry and academia, this first single comprehensive resource addresses recent developments in next generation DNA sequencing technology and their impact on genome research, drug discovery and health care. As such, it presents a detailed comparative analysis of commercially available platforms as well as insights into alternative, emerging sequencing techniques. In addition, the book not only covers the principles of DNA sequencing techniques but also social, ethical and commercial aspects, the concept of personalized medicine and a five-year perspective of DNA sequencing.
This volume covers a wide range of various fields of research, with the common thread being Next Generation Sequencing (NGS) related methods and applications, as well as analysis and interpretation of the data obtained. Chapters guide readers through the highly dynamic processes of translational and transcriptional profiling of a cell, method to detect copy number alterations (CNAs), targeted sequencing applications, method called “Hi-Plex” to characterize known polymorphic loci, single-cell of DNA or RNA, identify and characterize rare circulating CD4 T cells, and computational pipeline for RNAseq analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Next Generation Sequencing: Methods and Protocols aims to be useful and informative for further study into this vital field.
The introduction of Next Generation Sequencing (NGS) technologies resulted in a major transformation in the way scientists extract genetic information from biological systems, revealing limitless insight about the genome, transcriptome and epigenome of any species. However, with NGS, came its own challenges that require continuous development in the sequencing technologies and bioinformatics analysis of the resultant raw data and assembly of the full length genome and transcriptome. Such developments lead to outstanding improvements of the performance and coverage of sequencing and improved quality for the assembled sequences, nevertheless, challenges such as sequencing errors, expensive processing and memory usage for assembly and sequencer specific errors remains major challenges in the field. This book aims to provide brief overviews the NGS field with special focus on the challenges facing the NGS field, including information on different experimental platforms, assembly algorithms and software tools, assembly error correction approaches and the correlated challenges.
In recent years, owing to the fast development of a variety of sequencing technologies in the post human genome project era, sequencing analysis of a group of target genes, entire protein coding regions of the human genome, and the whole human genome has become a reality. Next Generation Sequencing (NGS) or Massively Parallel Sequencing (MPS) technologies offers a way to screen for mutations in many different genes in a cost and time efficient manner by deep coverage of the target sequences. This novel technology has now been applied to clinical diagnosis of Mendelian disorders of well characterized or undefined diseases, discovery of new disease genes, noninvasive prenatal diagnosis using maternal blood, and population based carrier testing of severe autosomal recessive disorders. This book covers topics of these applications, including potential limitations and expanded application in the future.
Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized medicine. About the editors: Somnath Datta is Professor and Vice Chair of Bioinformatics and Biostatistics at the University of Louisville. He is Fellow of the American Statistical Association, Fellow of the Institute of Mathematical Statistics and Elected Member of the International Statistical Institute. He has contributed to numerous research areas in Statistics, Biostatistics and Bioinformatics. Dan Nettleton is Professor and Laurence H. Baker Endowed Chair of Biological Statistics in the Department of Statistics at Iowa State University. He is Fellow of the American Statistical Association and has published research on a variety of topics in statistics, biology and bioinformatics.