New Trends in Difference Equations

New Trends in Difference Equations

Author: Saber N. Elaydi

Publisher: CRC Press

Published: 2002-02-28

Total Pages: 328

ISBN-13: 9780415283892

DOWNLOAD EBOOK

This series on the International Conference on Difference Equations and Applications has established a tradition within the mathematical community. It brings together scientists from many different areas of research to highlight current interests, challenges and unsolved problems. This volume comprises selected papers presented at the Fifth International Conference on Difference Equations, held at Temuco, Chile. Experts from around the globe examine many facets of difference equations, including extended hyperbolic difference equations, oscillation criteria, invertability, one- and two-dimensional perturbed maps and much more. It provides a valuable source of reference for graduates and researchers.


New Trends in Differential and Difference Equations and Applications

New Trends in Differential and Difference Equations and Applications

Author: Feliz Manuel Minhós

Publisher: MDPI

Published: 2019-10-14

Total Pages: 198

ISBN-13: 3039215388

DOWNLOAD EBOOK

This Special Issue aims to be a compilation of new results in the areas of differential and difference Equations, covering boundary value problems, systems of differential and difference equations, as well as analytical and numerical methods. The objective is to provide an overview of techniques used in these different areas and to emphasize their applicability to real-life phenomena, by the inclusion of examples. These examples not only clarify the theoretical results presented, but also provide insight on how to apply, for future works, the techniques used.


New Trends in Fractional Differential Equations with Real-World Applications in Physics

New Trends in Fractional Differential Equations with Real-World Applications in Physics

Author: Jagdev Singh

Publisher: Frontiers Media SA

Published: 2020-12-30

Total Pages: 172

ISBN-13: 2889663043

DOWNLOAD EBOOK

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.


Difference Equations

Difference Equations

Author: Walter G. Kelley

Publisher: Academic Press

Published: 2001

Total Pages: 418

ISBN-13: 9780124033306

DOWNLOAD EBOOK

Difference Equations, Second Edition, presents a practical introduction to this important field of solutions for engineering and the physical sciences. Topic coverage includes numerical analysis, numerical methods, differential equations, combinatorics and discrete modeling. A hallmark of this revision is the diverse application to many subfields of mathematics. Phase plane analysis for systems of two linear equations Use of equations of variation to approximate solutions Fundamental matrices and Floquet theory for periodic systems LaSalle invariance theorem Additional applications: secant line method, Bison problem, juvenile-adult population model, probability theory Appendix on the use of Mathematica for analyzing difference equaitons Exponential generating functions Many new examples and exercises


Partial Difference Equations

Partial Difference Equations

Author: Sui Sun Cheng

Publisher: CRC Press

Published: 2003-02-06

Total Pages: 284

ISBN-13: 9780415298841

DOWNLOAD EBOOK

Partial Difference Equations treats this major class of functional relations. Such equations have recursive structures so that the usual concepts of increments are important. This book describes mathematical methods that help in dealing with recurrence relations that govern the behavior of variables such as population size and stock price. It is helpful for anyone who has mastered undergraduate mathematical concepts. It offers a concise introduction to the tools and techniques that have proven successful in obtaining results in partial difference equations.


Differential/Difference Equations

Differential/Difference Equations

Author: Ioannis Dassios

Publisher: Mdpi AG

Published: 2021-11-30

Total Pages: 286

ISBN-13: 9783036523873

DOWNLOAD EBOOK

The study of oscillatory phenomena is an important part of the theory of differential equations. Oscillations naturally occur in virtually every area of applied science including, e.g., mechanics, electrical, radio engineering, and vibrotechnics. This Special Issue includes 19 high-quality papers with original research results in theoretical research, and recent progress in the study of applied problems in science and technology. This Special Issue brought together mathematicians with physicists, engineers, as well as other scientists. Topics covered in this issue: Oscillation theory; Differential/difference equations; Partial differential equations; Dynamical systems; Fractional calculus; Delays; Mathematical modeling and oscillations.


An Introduction to Difference Equations

An Introduction to Difference Equations

Author: Saber Elaydi

Publisher: Springer Science & Business Media

Published: 2005-03-29

Total Pages: 547

ISBN-13: 0387230599

DOWNLOAD EBOOK

A must-read for mathematicians, scientists and engineers who want to understand difference equations and discrete dynamics Contains the most complete and comprehenive analysis of the stability of one-dimensional maps or first order difference equations. Has an extensive number of applications in a variety of fields from neural network to host-parasitoid systems. Includes chapters on continued fractions, orthogonal polynomials and asymptotics. Lucid and transparent writing style


New Trends in Stochastic Analysis and Related Topics

New Trends in Stochastic Analysis and Related Topics

Author: Huaizhong Zhao

Publisher: World Scientific

Published: 2012

Total Pages: 458

ISBN-13: 9814360910

DOWNLOAD EBOOK

The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.


Numerical Solutions of Partial Differential Equations

Numerical Solutions of Partial Differential Equations

Author: Silvia Bertoluzza

Publisher: Springer Science & Business Media

Published: 2009-03-13

Total Pages: 196

ISBN-13: 3764389400

DOWNLOAD EBOOK

This book presents some of the latest developments in numerical analysis and scientific computing. Specifically, it covers central schemes, error estimates for discontinuous Galerkin methods, and the use of wavelets in scientific computing.