This book comprises the refereed proceedings of the two International Conference on Green and Smart Technology, GST 2012, and on Sensor and Its Applications, SIA 2012, held in Jeju Island, Korea, in November/December 2012. The papers presented were carefully reviewed and selected from numerous submissions and focus on the various aspects of green and smart technology with sensor applications.
"The culmination of more than twenty years of research, this authoritative resource provides you with a practical understanding of time-frequency signal analysis. The book offers in-depth coverage of critical concepts and principles, along with discussions on key applications in a wide range of signal processing areas, from communications and optics... to radar and biomedicine. Supported with over 140 illustrations and more than 1,700 equations, this detailed reference explores the topics you need to understand for your work in the field, such as Fourier analysis, linear time frequency representations, quadratic time-frequency distributions, higher order time-frequency representations, and analysis of non-stationary noisy signals. This unique book also serves as an excellent text for courses in this area, featuring numerous examples and problems at the end of each chapter. "
Window functions—otherwise known as weighting functions, tapering functions, or apodization functions—are mathematical functions that are zero-valued outside the chosen interval. They are well established as a vital part of digital signal processing. Window Functions and their Applications in Signal Processing presents an exhaustive and detailed account of window functions and their applications in signal processing, focusing on the areas of digital spectral analysis, design of FIR filters, pulse compression radar, and speech signal processing. Comprehensively reviewing previous research and recent developments, this book: Provides suggestions on how to choose a window function for particular applications Discusses Fourier analysis techniques and pitfalls in the computation of the DFT Introduces window functions in the continuous-time and discrete-time domains Considers two implementation strategies of window functions in the time- and frequency domain Explores well-known applications of window functions in the fields of radar, sonar, biomedical signal analysis, audio processing, and synthetic aperture radar
Provides the reader with a practical introduction to the wide range of important concepts that comprise the field of digital speech processing. Students of speech research and researchers working in the field can use this as a reference guide.
Periodic signals can be decomposed into sets of sinusoids having frequencies that are integer multiples of a fundamental frequency. The problem of finding such fundamental frequencies from noisy observations is important in many speech and audio applications, where it is commonly referred to as pitch estimation. These applications include analysis, compression, separation, enhancement, automatic transcription and many more. In this book, an introduction to pitch estimation is given and a number of statistical methods for pitch estimation are presented. The basic signal models and associated estimation theoretical bounds are introduced, and the properties of speech and audio signals are discussed and illustrated. The presented methods include both single- and multi-pitch estimators based on statistical approaches, like maximum likelihood and maximum a posteriori methods, filtering methods based on both static and optimal adaptive designs, and subspace methods based on the principles of subspace orthogonality and shift-invariance. The application of these methods to analysis of speech and audio signals is demonstrated using both real and synthetic signals, and their performance is assessed under various conditions and their properties discussed. Finally, the estimators are compared in terms of computational and statistical efficiency, generalizability and robustness. Table of Contents: Fundamentals / Statistical Methods / Filtering Methods / Subspace Methods / Amplitude Estimation