New Sinc Methods of Numerical Analysis

New Sinc Methods of Numerical Analysis

Author: Gerd Baumann

Publisher: Springer Nature

Published: 2021-04-23

Total Pages: 411

ISBN-13: 303049716X

DOWNLOAD EBOOK

This contributed volume honors the 80th birthday of Frank Stenger who established new Sinc methods in numerical analysis.The contributions, written independently from each other, show the new developments in numerical analysis in connection with Sinc methods and approximations of solutions for differential equations, boundary value problems, integral equations, integrals, linear transforms, eigenvalue problems, polynomial approximations, computations on polyhedra, and many applications. The approximation methods are exponentially converging compared with standard methods and save resources in computation. They are applicable in many fields of science including mathematics, physics, and engineering.The ideas discussed serve as a starting point in many different directions in numerical analysis research and applications which will lead to new and unprecedented results. This book will appeal to a wide readership, from students to specialized experts.


Handbook of Sinc Numerical Methods

Handbook of Sinc Numerical Methods

Author: Frank Stenger

Publisher: CRC Press

Published: 2017-05-31

Total Pages: 482

ISBN-13: 9781138116177

DOWNLOAD EBOOK

Handbook of Sinc Numerical Methods presents an ideal road map for handling general numeric problems. Reflecting the author�s advances with Sinc since 1995, the text most notably provides a detailed exposition of the Sinc separation of variables method for numerically solving the full range of partial differential equations (PDEs) of interest to scientists and engineers. This new theory, which combines Sinc convolution with the boundary integral equation (IE) approach, makes for exponentially faster convergence to solutions of differential equations. The basis for the approach is the Sinc method of approximating almost every type of operation stemming from calculus via easily computed matrices of very low dimension. The CD-ROM of this handbook contains roughly 450 MATLAB� programs corresponding to exponentially convergent numerical algorithms for solving nearly every computational problem of science and engineering. While the book makes Sinc methods accessible to users wanting to bypass the complete theory, it also offers sufficient theoretical details for readers who do want a full working understanding of this exciting area of numerical analysis.


Numerical Analysis of Spectral Methods

Numerical Analysis of Spectral Methods

Author: David Gottlieb

Publisher: SIAM

Published: 1977-01-01

Total Pages: 167

ISBN-13: 0898710235

DOWNLOAD EBOOK

A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.


Sinc Methods for Quadrature and Differential Equations

Sinc Methods for Quadrature and Differential Equations

Author: John Lund

Publisher: SIAM

Published: 1992-01-01

Total Pages: 306

ISBN-13: 089871298X

DOWNLOAD EBOOK

Here is an elementary development of the Sinc-Galerkin method with the focal point being ordinary and partial differential equations. This is the first book to explain this powerful computational method for treating differential equations. These methods are an alternative to finite difference and finite element schemes, and are especially adaptable to problems with singular solutions. The text is written to facilitate easy implementation of the theory into operating numerical code. The authors' use of differential equations as a backdrop for the presentation of the material allows them to present a number of the applications of the sinc method. Many of these applications are useful in numerical processes of interest quite independent of differential equations. Specifically, numerical interpolation and quadrature, while fundamental to the Galerkin development, are useful in their own right.


Introduction to Numerical Analysis

Introduction to Numerical Analysis

Author: J. Stoer

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 674

ISBN-13: 1475722729

DOWNLOAD EBOOK

On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.


Numerical Methods for Equations and its Applications

Numerical Methods for Equations and its Applications

Author: Ioannis K. Argyros

Publisher: CRC Press

Published: 2012-06-05

Total Pages: 476

ISBN-13: 1578087538

DOWNLOAD EBOOK

This book introduces advanced numerical-functional analysis to beginning computer science researchers. The reader is assumed to have had basic courses in numerical analysis, computer programming, computational linear algebra, and an introduction to real, complex, and functional analysis. Although the book is of a theoretical nature, each chapter contains several new theoretical results and important applications in engineering, in dynamic economics systems, in input-output system, in the solution of nonlinear and linear differential equations, and optimization problem.


Computational Methods for Numerical Analysis with R

Computational Methods for Numerical Analysis with R

Author: James P Howard, II

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 257

ISBN-13: 1498723640

DOWNLOAD EBOOK

Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.


An Introduction to Numerical Methods and Analysis

An Introduction to Numerical Methods and Analysis

Author: James F. Epperson

Publisher: John Wiley & Sons

Published: 2013-06-06

Total Pages: 579

ISBN-13: 1118626230

DOWNLOAD EBOOK

Praise for the First Edition ". . . outstandingly appealing with regard to its style, contents, considerations of requirements of practice, choice of examples, and exercises." —Zentrablatt Math ". . . carefully structured with many detailed worked examples . . ." —The Mathematical Gazette ". . . an up-to-date and user-friendly account . . ." —Mathematika An Introduction to Numerical Methods and Analysis addresses the mathematics underlying approximation and scientific computing and successfully explains where approximation methods come from, why they sometimes work (or don't work), and when to use one of the many techniques that are available. Written in a style that emphasizes readability and usefulness for the numerical methods novice, the book begins with basic, elementary material and gradually builds up to more advanced topics. A selection of concepts required for the study of computational mathematics is introduced, and simple approximations using Taylor's Theorem are also treated in some depth. The text includes exercises that run the gamut from simple hand computations, to challenging derivations and minor proofs, to programming exercises. A greater emphasis on applied exercises as well as the cause and effect associated with numerical mathematics is featured throughout the book. An Introduction to Numerical Methods and Analysis is the ideal text for students in advanced undergraduate mathematics and engineering courses who are interested in gaining an understanding of numerical methods and numerical analysis.


Numerical Analysis

Numerical Analysis

Author: Larkin Ridgway Scott

Publisher: Princeton University Press

Published: 2011-04-18

Total Pages: 342

ISBN-13: 1400838967

DOWNLOAD EBOOK

Computational science is fundamentally changing how technological questions are addressed. The design of aircraft, automobiles, and even racing sailboats is now done by computational simulation. The mathematical foundation of this new approach is numerical analysis, which studies algorithms for computing expressions defined with real numbers. Emphasizing the theory behind the computation, this book provides a rigorous and self-contained introduction to numerical analysis and presents the advanced mathematics that underpin industrial software, including complete details that are missing from most textbooks. Using an inquiry-based learning approach, Numerical Analysis is written in a narrative style, provides historical background, and includes many of the proofs and technical details in exercises. Students will be able to go beyond an elementary understanding of numerical simulation and develop deep insights into the foundations of the subject. They will no longer have to accept the mathematical gaps that exist in current textbooks. For example, both necessary and sufficient conditions for convergence of basic iterative methods are covered, and proofs are given in full generality, not just based on special cases. The book is accessible to undergraduate mathematics majors as well as computational scientists wanting to learn the foundations of the subject. Presents the mathematical foundations of numerical analysis Explains the mathematical details behind simulation software Introduces many advanced concepts in modern analysis Self-contained and mathematically rigorous Contains problems and solutions in each chapter Excellent follow-up course to Principles of Mathematical Analysis by Rudin


Fundamentals of Engineering Numerical Analysis

Fundamentals of Engineering Numerical Analysis

Author: Parviz Moin

Publisher: Cambridge University Press

Published: 2010-08-23

Total Pages: 257

ISBN-13: 1139489550

DOWNLOAD EBOOK

Since the original publication of this book, available computer power has increased greatly. Today, scientific computing is playing an ever more prominent role as a tool in scientific discovery and engineering analysis. In this second edition, the key addition is an introduction to the finite element method. This is a widely used technique for solving partial differential equations (PDEs) in complex domains. This text introduces numerical methods and shows how to develop, analyse, and use them. Complete MATLAB programs for all the worked examples are now available at www.cambridge.org/Moin, and more than 30 exercises have been added. This thorough and practical book is intended as a first course in numerical analysis, primarily for new graduate students in engineering and physical science. Along with mastering the fundamentals of numerical methods, students will learn to write their own computer programs using standard numerical methods.