New Perspectives in Algebraic Combinatorics

New Perspectives in Algebraic Combinatorics

Author: Louis J. Billera

Publisher: Cambridge University Press

Published: 1999-09-28

Total Pages: 360

ISBN-13: 9780521770873

DOWNLOAD EBOOK

This text contains expository contributions by respected researchers on the connections between algebraic geometry, topology, commutative algebra, representation theory, and convex geometry.


Algebraic Combinatorics

Algebraic Combinatorics

Author: Peter Orlik

Publisher: Springer Science & Business Media

Published: 2007-07-23

Total Pages: 182

ISBN-13: 3540683763

DOWNLOAD EBOOK

This book is based on two series of lectures given at a summer school on algebraic combinatorics at the Sophus Lie Centre in Nordfjordeid, Norway, in June 2003, one by Peter Orlik on hyperplane arrangements, and the other one by Volkmar Welker on free resolutions. Both topics are essential parts of current research in a variety of mathematical fields, and the present book makes these sophisticated tools available for graduate students.


Combinatorics and Commutative Algebra

Combinatorics and Commutative Algebra

Author: Richard P. Stanley

Publisher: Springer Science & Business Media

Published: 2004-10-15

Total Pages: 173

ISBN-13: 0817643699

DOWNLOAD EBOOK

* Stanley represents a broad perspective with respect to two significant topics from Combinatorial Commutative Algebra: 1) The theory of invariants of a torus acting linearly on a polynomial ring, and 2) The face ring of a simplicial complex * In this new edition, the author further develops some interesting properties of face rings with application to combinatorics


Combinatorial Algebraic Topology

Combinatorial Algebraic Topology

Author: Dimitry Kozlov

Publisher: Springer Science & Business Media

Published: 2008-01-08

Total Pages: 416

ISBN-13: 9783540730514

DOWNLOAD EBOOK

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.


Open Problems in Algebraic Combinatorics

Open Problems in Algebraic Combinatorics

Author: Christine Berkesch

Publisher: American Mathematical Society

Published: 2024-08-21

Total Pages: 382

ISBN-13: 147047333X

DOWNLOAD EBOOK

In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.


Mathematics: Frontiers and Perspectives

Mathematics: Frontiers and Perspectives

Author: Vladimir Igorevich Arnolʹd

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 476

ISBN-13: 9780821826973

DOWNLOAD EBOOK

A celebration of the state of mathematics at the end of the millennium. Produced under the auspices of the International Mathematical Union (IMU), the book was born as part of the activities of World Mathematical Year 2000. It consists of 28 articles written by influential mathematicians.


Combinatorial Commutative Algebra

Combinatorial Commutative Algebra

Author: Ezra Miller

Publisher: Springer Science & Business Media

Published: 2005-11-13

Total Pages: 425

ISBN-13: 0387271031

DOWNLOAD EBOOK

Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs


Combinatorics of Coxeter Groups

Combinatorics of Coxeter Groups

Author: Anders Bjorner

Publisher: Springer Science & Business Media

Published: 2006-02-25

Total Pages: 371

ISBN-13: 3540275967

DOWNLOAD EBOOK

Includes a rich variety of exercises to accompany the exposition of Coxeter groups Coxeter groups have already been exposited from algebraic and geometric perspectives, but this book will be presenting the combinatorial aspects of Coxeter groups


Combinatorics of Finite Sets

Combinatorics of Finite Sets

Author: Ian Anderson

Publisher: Courier Corporation

Published: 2002-01-01

Total Pages: 276

ISBN-13: 9780486422572

DOWNLOAD EBOOK

Among other subjects explored are the Clements-Lindström extension of the Kruskal-Katona theorem to multisets and the Greene-Kleitmen result concerning k-saturated chain partitions of general partially ordered sets. Includes exercises and solutions.


Lessons in Enumerative Combinatorics

Lessons in Enumerative Combinatorics

Author: Ömer Eğecioğlu

Publisher: Springer Nature

Published: 2021-05-13

Total Pages: 479

ISBN-13: 3030712508

DOWNLOAD EBOOK

This textbook introduces enumerative combinatorics through the framework of formal languages and bijections. By starting with elementary operations on words and languages, the authors paint an insightful, unified picture for readers entering the field. Numerous concrete examples and illustrative metaphors motivate the theory throughout, while the overall approach illuminates the important connections between discrete mathematics and theoretical computer science. Beginning with the basics of formal languages, the first chapter quickly establishes a common setting for modeling and counting classical combinatorial objects and constructing bijective proofs. From here, topics are modular and offer substantial flexibility when designing a course. Chapters on generating functions and partitions build further fundamental tools for enumeration and include applications such as a combinatorial proof of the Lagrange inversion formula. Connections to linear algebra emerge in chapters studying Cayley trees, determinantal formulas, and the combinatorics that lie behind the classical Cayley–Hamilton theorem. The remaining chapters range across the Inclusion-Exclusion Principle, graph theory and coloring, exponential structures, matching and distinct representatives, with each topic opening many doors to further study. Generous exercise sets complement all chapters, and miscellaneous sections explore additional applications. Lessons in Enumerative Combinatorics captures the authors' distinctive style and flair for introducing newcomers to combinatorics. The conversational yet rigorous presentation suits students in mathematics and computer science at the graduate, or advanced undergraduate level. Knowledge of single-variable calculus and the basics of discrete mathematics is assumed; familiarity with linear algebra will enhance the study of certain chapters.