This practical text provides knowledge of the basic neuroscience of sleep and sleep disorders as they interrelate with various neurologic conditions. Chapters in the first section cover neural networks involved in normal sleep processes, including dreams and memory. Also discussed are how these neural networks interact in various sleep stages and sleep disorders, such as sleep related movement disorders. The book's second section explores the pathophysiology of sleep disorders in the spectrum of neurologic conditions in both adults and children. This includes sleep changes in patients with dementia, seizures, headaches, and stroke, and other common neurologic disorders. Sleep Neurology fills an important gap in the sleep medicine literature by providing the underpinnings of sleep disorders and will be of great value to students, residents, and clinicians.
The Neuroscience of Sleep and Dreams provides comprehensive coverage of the basic neuroscience of both sleep and dreams for upper-level undergraduate and graduate students. It details new scientific discoveries, places those discoveries within evolutionary context, and links established findings with implications for sleep medicine. This second edition focuses on recent developments in the social nature of sleep and dreams. Coverage includes the neuroscience of all stages of sleep; the lifespan development of these sleep stages; the role of non-REM and REM sleep in health and mental health; comparative sleep; biological rhythms; sleep disorders; sleep memory; dream content; dream phenomenology, and dream functions. Students, scientists, and interested non-specialists will find this book accessible and informative.
This edited volume provides an overview the state-of-the-art in the field of cognitive neuroscience of memory consolidation. In a number of sections, the editors collect contributions of leading researchers . The topical focus lies on current issues of interest such as memory consolidation including working and long-term memory. In particular, the role of sleep in relation to memory consolidation will be addressed. The target audience primarily comprises research experts in the field of cognitive neuroscience but the book may also be beneficial for graduate students.
Sleep is the natural state of bodily rest, common to all mammals and birds and also seen in many reptiles, amphibians and fish. For most species, regular sleep is essential for survival, yet the specific purposes of sleep are still only partly clear and are the subject of intense research. This volume is comprised of the editors' selection of the most relevant articles on sleep from the Encyclopedia of Neuroscience, resulting in the first comprehensive collection of introductory articles on the neuroscience of sleep. Articles explore sleep's impact on neural functioning, sleep disorders, the relation between sleep and other clinical disorders, a look at sleep from a developmental perspective, and more. - Chapters offer impressive scope with topics addressing neural functioning, disorders, development, and more, carefully selected by one of the most preeminent sleep researchers - Richly illustrated in full color with over 100 figures - Contributors represent the most outstanding scholarship in the field, with each chapter providing fully vetted and reliable expert knowledge
Clinical practice related to sleep problems and sleep disorders has been expanding rapidly in the last few years, but scientific research is not keeping pace. Sleep apnea, insomnia, and restless legs syndrome are three examples of very common disorders for which we have little biological information. This new book cuts across a variety of medical disciplines such as neurology, pulmonology, pediatrics, internal medicine, psychiatry, psychology, otolaryngology, and nursing, as well as other medical practices with an interest in the management of sleep pathology. This area of research is not limited to very young and old patientsâ€"sleep disorders reach across all ages and ethnicities. Sleep Disorders and Sleep Deprivation presents a structured analysis that explores the following: Improving awareness among the general public and health care professionals. Increasing investment in interdisciplinary somnology and sleep medicine research training and mentoring activities. Validating and developing new and existing technologies for diagnosis and treatment. This book will be of interest to those looking to learn more about the enormous public health burden of sleep disorders and sleep deprivation and the strikingly limited capacity of the health care enterprise to identify and treat the majority of individuals suffering from sleep problems.
The purpose of this work is to review recent findings highlighting the mechanisms and functions of the neuronal oscillations that structure brain activity across the sleep-wake cycle. An increasing number of studies conducted in humans and animals, and using a variety of techniques ranging from intracellular recording to functional neuroimaging, has provided important insight into the mechanisms and functional properties of these brain rhythms. Studies of these rhythms are fundamental not only for basic neuroscience, but also for clinical neuroscience. At the basic science level, neuronal oscillations shape the interactions between different areas of the brain and profoundly impact neural responses to the environment, thereby mediating the processing of information in the brain. At the clinical level, brain oscillations are affected in numerous neurological conditions and might provide useful biomarkers that inform about patients’ evolution and vulnerability. During sleep, these brain rhythms could provide functional support to internal states that govern the basic maintenance of local circuit and systemic interactions. During wake, the rhythmicity of cortical and subcortical circuits have been linked with sensory processing, cognitive operations, and preparation for action. This book will attempt to link together these sleep and wake functional roles at the level of neuroimaging and electroencephalographic measures, local field potentials, and even at the cellular level.
Sleep has long been a topic of fascination for artists and scientists. Why do we sleep? What function does sleep serve? Why do we dream? What significance can we attach to our dreams? We spend so much of our lives sleeping, yet its precise function is unclear, in spite of our increasing understanding of the processes generating and maintaining sleep. We now know that sleep can be accompanied by periods of intense cerebral activity, yet only recently has experimental data started to provide us with soem insights into the type of processing taking place in the brain as we sleep. There is now strong evidence that sleep plays a crucial role in learning and in the consolidation of memories. Once the preserve of psychoanalysts, 'dreaming' is now a topic of increasing interest amongst scientists. With research into sleep growing, this volume is both timely and valuable in presenting a unique study of the relationship between sleep, learning, and memory. It brings together a team of international scientists researching sleep in both human and animal subjects. Aimed at researchers within the fields of neuroscience, cognitive neuroscience, psychiatry, and neurology, this book will be an important first step in developing a full scientific understanding of one of our most intriguing human characteristics.
Pharmacological approaches to our understanding of sleep have been at the forefront of sleep research for many years. Traditional techniques have included the use of pharmacological agonists and antagonists, as well as transmitter-specific lesions. These have been enhanced by the introduction of molecular genetics and the use of transgenes and targeted gene deletion. Neurochemistry of Sleep and Wakefulness is an exceptional, single source of information on the role of the major mammalian neurotransmitter systems involved in the regulation of sleep and waking. With contributions from internationally recognized experts, this book clearly describes how researchers have made use of the myriad techniques in their armamentarium to characterize the role of a given neurotransmitter in the regulation of sleep and waking. Suitable for experimental and clinical pharmacologists, the book will have wider appeal to sleep researchers, psychiatrists and any professional interested in the interdisciplinary areas of neurobiology and pharmacology.
For half a century, Sleep and Wakefulness has been a valuable reference work. It discusses phases of the sleep cycle, experimental work on sleep and wakefulness, sleep disorders and their treatment, and such sleep-like states as hypnosis and hibernation.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."