Rigorous stability proofs are further verified by computer simulations, and appendices contain the computer code needed to build intelligent controllers for real-time applications. Neural networks capture the parallel processing and learning capabilities of biological nervous systems, and fuzzy logic captures the decision-making capabilities of human linguistics and cognitive systems.
Brings neural networks and fuzzy logic together with dynamical control systems. Each chapter presents powerful control approaches for the design of intelligent controllers to compensate for actuator nonlinearities.
Fuzzy control methods are critical for meeting the demands of complex nonlinear systems. They bestow robust, adaptive, and self-correcting character to complex systems that demand high stability and functionality beyond the capabilities of traditional methods. A thorough treatise on the theory of fuzzy logic control is out of place on the design bench. That is why Fuzzy Controller Design: Theory and Applications offers laboratory- and industry-tested algorithms, techniques, and formulations of real-world problems for immediate implementation. With surgical precision, the authors carefully select the fundamental elements of fuzzy logic control theory necessary to formulate effective and efficient designs. The book supplies a springboard of knowledge, punctuated with examples worked out in MATLAB®/SIMULINK®, from which newcomers to the field can dive directly into applications. It systematically covers the design of hybrid, adaptive, and self-learning fuzzy control structures along with strategies for fuzzy controller design suitable for on-line and off-line operation. Examples occupy an entire chapter, with a section devoted to the simulation of an electro-hydraulic servo system. The final chapter explores industrial applications with emphasis on techniques for fuzzy controller implementation and different implementation platforms for various applications. With proven methods based on more than a decade of experience, Fuzzy Controller Design: Theory and Applications is a concise guide to the methodology, design steps, and formulations for effective control solutions.
This book provides a basic understanding of adaptive control and its applications in Flight control. It discusses the designing of an adaptive feedback control system and analyzes this for flight control of linear and nonlinear aircraft models using synthetic jet actuators. It also discusses control methodologies and the application of control techniques which will help practicing flight control and active flow control researchers. It also covers modelling and control designs which will also benefit researchers from the background of fluid mechanics and health management of actuation systems. The unique feature of this book is characterization of synthetic jet actuator nonlinearities over a wide range of angles of attack, an adaptive compensation scheme for such nonlinearities, and a systematic framework for feedback control of aircraft dynamics with synthetic jet actuators.
The book deals with intelligent control of mobile robots, presenting the state-of-the-art in the field, and introducing new control algorithms developed and tested by the authors. It also discusses the use of artificial intelligent methods like neural networks and neuraldynamic programming, including globalised dual-heuristic dynamic programming, for controlling wheeled robots and robotic manipulators,and compares them to classical control methods.
This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors. This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF). The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold. The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network. The third control scheme applies a decentralized neural inverse optimal control for stabilization. The fourth decentralized neural inverse optimal control is designed for trajectory tracking. This comprehensive work on decentralized control of robot manipulators and mobile robots is intended for professors, students and professionals wanting to understand and apply advanced knowledge in their field of work.
Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.
Control Strategy for Time-Delay Systems Part I: Concepts and Theories covers all the important features of real-world practical applications which will be valuable to practicing engineers and specialists, especially given that delays are present in 99% of industrial processes. The book presents the views of the editors on promising research directions and future industrial applications in this area. Although the fundamentals of time-delay systems are discussed, the book focuses on the advanced modeling and control of such systems and will provide the analysis and test (or simulation) results of nearly every technique described. For this purpose, highly complex models are introduced to ?describe the mentioned new applications, which are characterized by ?time-varying delays with intermittent and stochastic nature, several types of nonlinearities, and the presence ?of different time-scales. Researchers, practitioners, and PhD students will gain insights into the prevailing trends in design and operation of real-time control systems, reviewing the shortcomings and future developments concerning practical system issues, such as standardization, protection, and design. - Presents an overview of the most recent trends for time-delay systems - Covers the important features of the real-world practical applications that can be valuable to practicing engineers and specialists - Provides analysis and simulations results of the techniques described in the book
A smart civil structure integrates smart materials, sensors, actuators, signal processors, communication networks, power sources, diagonal strategies, control strategies, repair strategies, and life-cycle management strategies. It should function optimally and safely in its environment and maintain structural integrity during strong winds, severe earthquakes, and other extreme events. This book extends from the fundamentals to the state-of-the-art. It covers the elements of smart civil structures, their integration, and their functions. The elements consist of smart materials, sensors, control devices, signal processors, and communication networks. Integration refers to multi-scale modelling and model updating, multi-type sensor placement, control theory, and collective placement of control devices and sensors. And the functions include structural health monitoring, structural vibration control, structural self-repairing, and structural energy harvesting, with emphasis on their synthesis to form truly smart civil structures. It suits civil engineering students, professionals, and researchers with its blend of principles and practice.
In this carefully edited book some selected results of theoretical and applied research in the field of broadly perceived intelligent systems are presented. The problems vary from industrial to web and problem independent applications. All this is united under the slogan: "Intelligent systems conquer the world”. The book brings together innovation projects with analytical research, invention, retrieval and processing of knowledge and logical applications in technology. This book is aiming to a wide circle of readers and particularly to the young generation of IT/ICT experts who will build the next generations of intelligent systems.