Handbook of Operations Research and Management Science in Higher Education

Handbook of Operations Research and Management Science in Higher Education

Author: Zilla Sinuany-Stern

Publisher: Springer Nature

Published: 2021-09-09

Total Pages: 529

ISBN-13: 303074051X

DOWNLOAD EBOOK

This handbook covers various areas of Higher Education (HE) in which operations research/management science (OR/MS) techniques are used. Key examples include: international comparisons, university rankings, and rating academic efficiency with Data Envelopment Analysis (DEA); formulating academic strategy with balanced scorecard; budgeting and planning with linear and quadratic models; student forecasting; E-learning evaluation; faculty evaluation with questionnaires and multivariate statistics; marketing for HE; analytic and educational simulation; academic information systems; technology transfer with systems analysis; and examination timetabling. Overviews, case studies and findings on advanced OR/MS applications in various functional areas of HE are included.


Time-Series Forecasting

Time-Series Forecasting

Author: Chris Chatfield

Publisher: CRC Press

Published: 2000-10-25

Total Pages: 281

ISBN-13: 1420036203

DOWNLOAD EBOOK

From the author of the bestselling "Analysis of Time Series," Time-Series Forecasting offers a comprehensive, up-to-date review of forecasting methods. It provides a summary of time-series modelling procedures, followed by a brief catalogue of many different time-series forecasting methods, ranging from ad-hoc methods through ARIMA and state-space


Forecasting with Exponential Smoothing

Forecasting with Exponential Smoothing

Author: Rob Hyndman

Publisher: Springer Science & Business Media

Published: 2008-06-19

Total Pages: 362

ISBN-13: 3540719180

DOWNLOAD EBOOK

Exponential smoothing methods have been around since the 1950s, and are still the most popular forecasting methods used in business and industry. However, a modeling framework incorporating stochastic models, likelihood calculation, prediction intervals and procedures for model selection, was not developed until recently. This book brings together all of the important new results on the state space framework for exponential smoothing. It will be of interest to people wanting to apply the methods in their own area of interest as well as for researchers wanting to take the ideas in new directions. Part 1 provides an introduction to exponential smoothing and the underlying models. The essential details are given in Part 2, which also provide links to the most important papers in the literature. More advanced topics are covered in Part 3, including the mathematical properties of the models and extensions of the models for specific problems. Applications to particular domains are discussed in Part 4.


Introduction to Time Series Forecasting With Python

Introduction to Time Series Forecasting With Python

Author: Jason Brownlee

Publisher: Machine Learning Mastery

Published: 2017-02-16

Total Pages: 359

ISBN-13:

DOWNLOAD EBOOK

Time series forecasting is different from other machine learning problems. The key difference is the fixed sequence of observations and the constraints and additional structure this provides. In this Ebook, finally cut through the math and specialized methods for time series forecasting. Using clear explanations, standard Python libraries and step-by-step tutorials you will discover how to load and prepare data, evaluate model skill, and implement forecasting models for time series data.


The Nature of Statistical Learning Theory

The Nature of Statistical Learning Theory

Author: Vladimir Vapnik

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 324

ISBN-13: 1475732643

DOWNLOAD EBOOK

The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.


Non-Linear Time Series

Non-Linear Time Series

Author: Kamil Feridun Turkman

Publisher: Springer

Published: 2014-09-29

Total Pages: 255

ISBN-13: 3319070282

DOWNLOAD EBOOK

This book offers a useful combination of probabilistic and statistical tools for analyzing nonlinear time series. Key features of the book include a study of the extremal behavior of nonlinear time series and a comprehensive list of nonlinear models that address different aspects of nonlinearity. Several inferential methods, including quasi likelihood methods, sequential Markov Chain Monte Carlo Methods and particle filters, are also included so as to provide an overall view of the available tools for parameter estimation for nonlinear models. A chapter on integer time series models based on several thinning operations, which brings together all recent advances made in this area, is also included. Readers should have attended a prior course on linear time series, and a good grasp of simulation-based inferential methods is recommended. This book offers a valuable resource for second-year graduate students and researchers in statistics and other scientific areas who need a basic understanding of nonlinear time series.


Forecasting and Assessing Risk of Individual Electricity Peaks

Forecasting and Assessing Risk of Individual Electricity Peaks

Author: Maria Jacob

Publisher: Springer Nature

Published: 2019-09-25

Total Pages: 108

ISBN-13: 303028669X

DOWNLOAD EBOOK

The overarching aim of this open access book is to present self-contained theory and algorithms for investigation and prediction of electric demand peaks. A cross-section of popular demand forecasting algorithms from statistics, machine learning and mathematics is presented, followed by extreme value theory techniques with examples. In order to achieve carbon targets, good forecasts of peaks are essential. For instance, shifting demand or charging battery depends on correct demand predictions in time. Majority of forecasting algorithms historically were focused on average load prediction. In order to model the peaks, methods from extreme value theory are applied. This allows us to study extremes without making any assumption on the central parts of demand distribution and to predict beyond the range of available data. While applied on individual loads, the techniques described in this book can be extended naturally to substations, or to commercial settings. Extreme value theory techniques presented can be also used across other disciplines, for example for predicting heavy rainfalls, wind speed, solar radiation and extreme weather events. The book is intended for students, academics, engineers and professionals that are interested in short term load prediction, energy data analytics, battery control, demand side response and data science in general.


Time Series Analysis and Forecasting by Example

Time Series Analysis and Forecasting by Example

Author: Søren Bisgaard

Publisher: John Wiley & Sons

Published: 2011-08-24

Total Pages: 346

ISBN-13: 1118056957

DOWNLOAD EBOOK

An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in detail and explain the relevant theory while also focusing on the interpretation of results in data analysis. Following a discussion of why autocorrelation is often observed when data is collected in time, subsequent chapters explore related topics, including: Graphical tools in time series analysis Procedures for developing stationary, non-stationary, and seasonal models How to choose the best time series model Constant term and cancellation of terms in ARIMA models Forecasting using transfer function-noise models The final chapter is dedicated to key topics such as spurious relationships, autocorrelation in regression, and multiple time series. Throughout the book, real-world examples illustrate step-by-step procedures and instructions using statistical software packages such as SAS, JMP, Minitab, SCA, and R. A related Web site features PowerPoint slides to accompany each chapter as well as the book's data sets. With its extensive use of graphics and examples to explain key concepts, Time Series Analysis and Forecasting by Example is an excellent book for courses on time series analysis at the upper-undergraduate and graduate levels. it also serves as a valuable resource for practitioners and researchers who carry out data and time series analysis in the fields of engineering, business, and economics.


Forecasting: principles and practice

Forecasting: principles and practice

Author: Rob J Hyndman

Publisher: OTexts

Published: 2018-05-08

Total Pages: 380

ISBN-13: 0987507117

DOWNLOAD EBOOK

Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.