The Neural Simulation Language

The Neural Simulation Language

Author: Alfredo Weitzenfeld

Publisher: MIT Press

Published: 2002

Total Pages: 466

ISBN-13: 9780262731492

DOWNLOAD EBOOK

Simulation in NSL - Modeling in NSL - Schematic Capture System - User Interface and Graphical Windows - The Modeling Language NSLM - The Scripting Language NSLS - Adaptive Resonance Theory - Depth Perception - Retina - Receptive Fields - The Associative Search Network: Landmark Learning and Hill Climbing - A Model of Primate Visual-Motor Conditional Learning - The Modular Design of the Oculomotor System in Monkeys - Crowley-Arbib Saccade Model - A Cerebellar Model of Sensorimotor Adaptation - Learning to Detour - Face Recognition by Dynamic Link Matching - Appendix I : NSLM Methods - NSLJ Extensions - NSLC Extensions - NSLJ and NSLC Differences - NSLJ and NSLC Installation Instructions.


Neural Modeling

Neural Modeling

Author: Ronald MacGregor

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 413

ISBN-13: 1468421905

DOWNLOAD EBOOK

The purpose of this book is to introduce and survey the various quantitative methods which have been proposed for describing, simulating, embodying, or characterizing the processing of electrical signals in nervous systems. We believe that electrical signal processing is a vital determinant of the functional organization of the brain, and that in unraveling the inherent complexities of this processing it will be essential to utilize the methods of quantification and modeling which have led to crowning successes in the physical and engineering sciences. In comprehensive terms, we conceive neural modeling to be the attempt to relate, in nervous systems, function to structure on the basis of operation. Sufficient knowledge and appropriate tools are at hand to maintain a serious and thorough study in the area. However, work in the area has yet to be satisfactorily integrated within contemporary brain research. Moreover, there exists a good deal of inefficiency within the area resulting from an overall lack of direction, critical self-evaluation, and cohesion. Such theoretical and modeling studies as have appeared exist largely as fragmented islands in the literature or as sparsely attended sessions at neuroscience conferences. In writing this book, we were guided by three main immediate objectives. Our first objective is to introduce the area to the upcoming generation of students of both the hard sciences and psychological and biological sciences in the hope that they might eventually help bring about the contributions it promises.


Modeling Brain Function

Modeling Brain Function

Author: D. J. Amit

Publisher: Cambridge University Press

Published: 1989

Total Pages: 528

ISBN-13: 9780521421249

DOWNLOAD EBOOK

One of the most exciting and potentially rewarding areas of scientific research is the study of the principles and mechanisms underlying brain function. It is also of great promise to future generations of computers. A growing group of researchers, adapting knowledge and techniques from a wide range of scientific disciplines, have made substantial progress understanding memory, the learning process, and self organization by studying the properties of models of neural networks - idealized systems containing very large numbers of connected neurons, whose interactions give rise to the special qualities of the brain. This book introduces and explains the techniques brought from physics to the study of neural networks and the insights they have stimulated. It is written at a level accessible to the wide range of researchers working on these problems - statistical physicists, biologists, computer scientists, computer technologists and cognitive psychologists. The author presents a coherent and clear nonmechanical presentation of all the basic ideas and results. More technical aspects are restricted, wherever possible, to special sections and appendices in each chapter. The book is suitable as a text for graduate courses in physics, electrical engineering, computer science and biology.


Neuronal Dynamics

Neuronal Dynamics

Author: Wulfram Gerstner

Publisher: Cambridge University Press

Published: 2014-07-24

Total Pages: 591

ISBN-13: 1107060834

DOWNLOAD EBOOK

This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.


How to Build a Brain

How to Build a Brain

Author: Chris Eliasmith

Publisher: Oxford University Press

Published: 2013-04-16

Total Pages: 475

ISBN-13: 0199794693

DOWNLOAD EBOOK

How to Build a Brain provides a detailed exploration of a new cognitive architecture - the Semantic Pointer Architecture - that takes biological detail seriously, while addressing cognitive phenomena. Topics ranging from semantics and syntax, to neural coding and spike-timing-dependent plasticity are integrated to develop the world's largest functional brain model.


Probabilistic Models of the Brain

Probabilistic Models of the Brain

Author: Rajesh P.N. Rao

Publisher: MIT Press

Published: 2002-03-29

Total Pages: 348

ISBN-13: 9780262264327

DOWNLOAD EBOOK

A survey of probabilistic approaches to modeling and understanding brain function. Neurophysiological, neuroanatomical, and brain imaging studies have helped to shed light on how the brain transforms raw sensory information into a form that is useful for goal-directed behavior. A fundamental question that is seldom addressed by these studies, however, is why the brain uses the types of representations it does and what evolutionary advantage, if any, these representations confer. It is difficult to address such questions directly via animal experiments. A promising alternative is to use probabilistic principles such as maximum likelihood and Bayesian inference to derive models of brain function. This book surveys some of the current probabilistic approaches to modeling and understanding brain function. Although most of the examples focus on vision, many of the models and techniques are applicable to other modalities as well. The book presents top-down computational models as well as bottom-up neurally motivated models of brain function. The topics covered include Bayesian and information-theoretic models of perception, probabilistic theories of neural coding and spike timing, computational models of lateral and cortico-cortical feedback connections, and the development of receptive field properties from natural signals.


An Introduction to Modeling Neuronal Dynamics

An Introduction to Modeling Neuronal Dynamics

Author: Christoph Börgers

Publisher: Springer

Published: 2017-04-17

Total Pages: 445

ISBN-13: 3319511718

DOWNLOAD EBOOK

This book is intended as a text for a one-semester course on Mathematical and Computational Neuroscience for upper-level undergraduate and beginning graduate students of mathematics, the natural sciences, engineering, or computer science. An undergraduate introduction to differential equations is more than enough mathematical background. Only a slim, high school-level background in physics is assumed, and none in biology. Topics include models of individual nerve cells and their dynamics, models of networks of neurons coupled by synapses and gap junctions, origins and functions of population rhythms in neuronal networks, and models of synaptic plasticity. An extensive online collection of Matlab programs generating the figures accompanies the book.


The Handbook of Brain Theory and Neural Networks

The Handbook of Brain Theory and Neural Networks

Author: Michael A. Arbib

Publisher: MIT Press

Published: 2003

Total Pages: 1328

ISBN-13: 0262011972

DOWNLOAD EBOOK

This second edition presents the enormous progress made in recent years in the many subfields related to the two great questions : how does the brain work? and, How can we build intelligent machines? This second edition greatly increases the coverage of models of fundamental neurobiology, cognitive neuroscience, and neural network approaches to language. (Midwest).


The Handbook of Brain Theory and Neural Networks

The Handbook of Brain Theory and Neural Networks

Author: Michael A. Arbib

Publisher: MIT Press (MA)

Published: 1998

Total Pages: 1118

ISBN-13: 9780262511025

DOWNLOAD EBOOK

Choice Outstanding Academic Title, 1996. In hundreds of articles by experts from around the world, and in overviews and "road maps" prepared by the editor, The Handbook of Brain Theory and Neural Networks charts the immense progress made in recent years in many specific areas related to great questions: How does the brain work? How can we build intelligent machines? While many books discuss limited aspects of one subfield or another of brain theory and neural networks, the Handbook covers the entire sweep of topics—from detailed models of single neurons, analyses of a wide variety of biological neural networks, and connectionist studies of psychology and language, to mathematical analyses of a variety of abstract neural networks, and technological applications of adaptive, artificial neural networks. Expository material makes the book accessible to readers with varied backgrounds while still offering a clear view of the recent, specialized research on specific topics.


Tutorial on Neural Systems Modeling

Tutorial on Neural Systems Modeling

Author: Thomas J. Anastasio

Publisher: Sinauer

Published: 2010-03-01

Total Pages: 0

ISBN-13: 9780878933396

DOWNLOAD EBOOK

For students of neuroscience and cognitive science who wish to explore the functioning of the brain further, but lack an extensive background in computer programming or maths, this new book makes neural systems modelling truly accessible. Short, simple MATLAB computer programs give readers all the experience necessary to run their own simulations.