The book has 11 chapters dealing with the following topics: Microstrip line negative group delay circuits and applications to communication systems; Negative group delay power dividers; Delay-induced negative group delay; Microwave transversal and recursive filter-based negative group delay circuits and non-Foster elements; Hybrid coupler-based NGD circuit; NGD-based Hilbert filter; Design technique on the microwave amplifier-based active lumped NGD devices; Limits of passive and active negative group delay distributed circuits; Superluminality and detectable information in dispersive channels; Split-ring resonator-loaded X-band waveguide supporting negative group velocity; and Metamaterial-based common-mode noise filter with NGD effect for multilayer PCB.
The book has 11 chapters dealing with the following topics: Microstrip line negative group delay circuits and applications to communication systems; Negative group delay power dividers; Delay-induced negative group delay; Microwave transversal and recursive filter-based negative group delay circuits and non-Foster elements; Hybrid coupler-based NGD circuit; NGD-based Hilbert filter; Design technique on the microwave amplifier-based active lumped NGD devices; Limits of passive and active negative group delay distributed circuits; Superluminality and detectable information in dispersive channels; Split-ring resonator-loaded X-band waveguide supporting negative group velocity; and Metamaterial-based common-mode noise filter with NGD effect for multilayer PCB.
This book aims to highlight the strength and state-of-art of some techniques and methods applied to intelligent systems. Rather to cover the variety of techniques and methods available in the literature, which is out of scope of this book, it focuses on those consolidated and applied and on those with high potential of implementation to smart systems. This book has fourteen chapters covering abroad range of topics in communications. The first three chapters are devoted to state-of-art and review papers on planar filters, unmanned aerial vehicles (UAV), negative group delay, nanoclusters, and tunable lights, while the remain chapters cover specific topics such as smart monitoring, V2I, high-speed links, RF and Optical sensors, composite material, metamaterial, energy harvesting, radar, SWIPT, and electromagnetic sources.
The process of Integrated Circuits (IC) started its era of VLSI (Very Large Scale Integration) in 1970’s when thousands of transistors were integrated into one single chip. Nowadays we are able to integrate more than a billion transistors on a single chip. However, the term “VLSI” is still being used, though there was some effort to coin a new term ULSI (Ultra-Large Scale Integration) for fine distinctions many years ago. VLSI technology has brought tremendous benefits to our everyday life since its occurrence. VLSI circuits are used everywhere, real applications include microprocessors in a personal computer or workstation, chips in a graphic card, digital camera or camcorder, chips in a cell phone or a portable computing device, and embedded processors in an automobile, et al. VLSI covers many phases of design and fabrication of integrated circuits. For a commercial chip design, it involves system definition, VLSI architecture design and optimization, RTL (register transfer language) coding, (pre- and post-synthesis) simulation and verification, synthesis, place and route, timing analyses and timing closure, and multi-step semiconductor device fabrication including wafer processing, die preparation, IC packaging and testing, et al. As the process technology scales down, hundreds or even thousands of millions of transistors are integrated into one single chip. Hence, more and more complicated systems can be integrated into a single chip, the so-called System-on-chip (SoC), which brings to VLSI engineers ever increasingly challenges to master techniques in various phases of VLSI design. For modern SoC design, practical applications are usually speed hungry. For instance, Ethernet standard has evolved from 10Mbps to 10Gbps. Now the specification for 100Mbps Ethernet is on the way. On the other hand, with the popularity of wireless and portable computing devices, low power consumption has become extremely critical. To meet these contradicting requirements, VLSI designers have to perform optimizations at all levels of design. This book is intended to cover a wide range of VLSI design topics. The book can be roughly partitioned into four parts. Part I is mainly focused on algorithmic level and architectural level VLSI design and optimization for image and video signal processing systems. Part II addresses VLSI design optimizations for cryptography and error correction coding. Part III discusses general SoC design techniques as well as other application-specific VLSI design optimizations. The last part will cover generic nano-scale circuit-level design techniques.
The nonequilibrium behavior of nanoscopic and biological systems, which are typically strongly fluctuating, is a major focus of current research. Lately, much progress has been made in understanding such systems from a thermodynamic perspective. However, new theoretical challenges emerge when the fluctuating system is additionally subject to time delay, e.g. due to the presence of feedback loops. This thesis advances this young and vibrant research field in several directions. The first main contribution concerns the probabilistic description of time-delayed systems; e.g. by introducing a versatile approximation scheme for nonlinear delay systems. Second, it reveals that delay can induce intriguing thermodynamic properties such as anomalous (reversed) heat flow. More generally, the thesis shows how to treat the thermodynamics of non-Markovian systems by introducing auxiliary variables. It turns out that delayed feedback is inextricably linked to nonreciprocal coupling, information flow, and to net energy input on the fluctuating level.
This new edition features numerous updates and additions. Especially 4 new chapters on Fiber Optics, Integrated Optics, Frequency Combs and Interferometry reflect the changes since the first edition. In addition, major complete updates for the chapters: Optical Materials and Their Properties, Optical Detectors, Nanooptics, and Optics far Beyond the Diffraction Limit. Features Contains over 1000 two-color illustrations. Includes over 120 comprehensive tables with properties of optical materials and light sources. Emphasizes physical concepts over extensive mathematical derivations. Chapters with summaries, detailed index Delivers a wealth of up-to-date references.
This volume presents the state of the art in the research on new possibilities for communication and computation based on quantum theory and nonlocality, as well as related directions and problems. It discusses challenging issues: decoherence and irreversibility; nonlocality and superluminosity; photonics; quantum information and communication; quantum computation.
Nonlinear Optical Materials and Devices for Applications in Information Technology takes the reader from fundamental interactions of laser light in materials to the latest developments of digital optical information processing. The book emphasises nonlinear optical interactions in bulk and low-dimensional semiconductors, liquid crystals and optical fibres. After establishing the basic laser--material interactions in these materials, it goes on to assess applications in soliton propagation, integrated optics, smart pixel arrays and digital optical computing.