Latent Variable Analysis and Signal Separation

Latent Variable Analysis and Signal Separation

Author: Vincent Vigneron

Publisher: Springer Science & Business Media

Published: 2010-09-27

Total Pages: 672

ISBN-13: 364215994X

DOWNLOAD EBOOK

Thisvolumecollectsthepaperspresentedatthe9thInternationalConferenceon Latent Variable Analysis and Signal Separation,LVA/ICA 2010. The conference was organized by INRIA, the French National Institute for Computer Science and Control,and was held in Saint-Malo, France, September 27–30,2010,at the Palais du Grand Large. Tenyearsafterthe?rstworkshoponIndependent Component Analysis(ICA) in Aussois, France, the series of ICA conferences has shown the liveliness of the community of theoreticians and practitioners working in this ?eld. While ICA and blind signal separation have become mainstream topics, new approaches have emerged to solve problems involving signal mixtures or various other types of latent variables: semi-blind models, matrix factorization using sparse com- nent analysis, non-negative matrix factorization, probabilistic latent semantic indexing, tensor decompositions, independent vector analysis, independent s- space analysis, and so on. To re?ect this evolution towards more general latent variable analysis problems in signal processing, the ICA International Steering Committee decided to rename the 9th instance of the conference LVA/ICA. From more than a hundred submitted papers, 25 were accepted as oral p- sentationsand53 asposter presentations. Thecontent ofthis volumefollowsthe conference schedule, resulting in 14 chapters. The papers collected in this v- ume demonstrate that the research activity in the ?eld continues to range from abstract concepts to the most concrete and applicable questions and consid- ations. Speech and audio, as well as biomedical applications, continue to carry the mass of the applications considered.


Latent Variable Analysis and Signal Separation

Latent Variable Analysis and Signal Separation

Author: Petr Tichavský

Publisher: Springer

Published: 2017-02-13

Total Pages: 578

ISBN-13: 3319535471

DOWNLOAD EBOOK

This book constitutes the proceedings of the 13th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICA 2017, held in Grenoble, France, in Feburary 2017. The 53 papers presented in this volume were carefully reviewed and selected from 60 submissions. They were organized in topical sections named: tensor approaches; from source positions to room properties: learning methods for audio scene geometry estimation; tensors and audio; audio signal processing; theoretical developments; physics and bio signal processing; latent variable analysis in observation sciences; ICA theory and applications; and sparsity-aware signal processing.


Latent Variable Analysis and Signal Separation

Latent Variable Analysis and Signal Separation

Author: Fabian Theis

Publisher: Springer Science & Business Media

Published: 2012-03-01

Total Pages: 552

ISBN-13: 3642285503

DOWNLOAD EBOOK

This book constitutes the proceedings of the 10th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICA 2012, held in Tel Aviv, Israel, in March 2012. The 20 revised full papers presented together with 42 revised poster papers, 1 keynote lecture, and 2 overview papers for the regular, as well as for the special session were carefully reviewed and selected from numerous submissions. Topics addressed are ranging from theoretical issues such as causality analysis and measures, through novel methods for employing the well-established concepts of sparsity and non-negativity for matrix and tensor factorization, down to a variety of related applications ranging from audio and biomedical signals to precipitation analysis.


Latent Variable Analysis and Signal Separation

Latent Variable Analysis and Signal Separation

Author: Yannick Deville

Publisher: Springer

Published: 2018-06-05

Total Pages: 583

ISBN-13: 3319937642

DOWNLOAD EBOOK

This book constitutes the proceedings of the 14th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICA 2018, held in Guildford, UK, in July 2018.The 52 full papers were carefully reviewed and selected from 62 initial submissions. As research topics the papers encompass a wide range of general mixtures of latent variables models but also theories and tools drawn from a great variety of disciplines such as structured tensor decompositions and applications; matrix and tensor factorizations; ICA methods; nonlinear mixtures; audio data and methods; signal separation evaluation campaign; deep learning and data-driven methods; advances in phase retrieval and applications; sparsity-related methods; and biomedical data and methods.


Latent Variable Analysis and Signal Separation

Latent Variable Analysis and Signal Separation

Author: Emmanuel Vincent

Publisher: Springer

Published: 2015-08-14

Total Pages: 534

ISBN-13: 3319224824

DOWNLOAD EBOOK

This book constitutes the proceedings of the 12th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICS 2015, held in Liberec, Czech Republic, in August 2015. The 61 revised full papers presented – 29 accepted as oral presentations and 32 accepted as poster presentations – were carefully reviewed and selected from numerous submissions. Five special topics are addressed: tensor-based methods for blind signal separation; deep neural networks for supervised speech separation/enhancement; joined analysis of multiple datasets, data fusion, and related topics; advances in nonlinear blind source separation; sparse and low rank modeling for acoustic signal processing.


Latent Class and Latent Transition Analysis

Latent Class and Latent Transition Analysis

Author: Linda M. Collins

Publisher: John Wiley & Sons

Published: 2013-05-20

Total Pages: 273

ISBN-13: 111821076X

DOWNLOAD EBOOK

A modern, comprehensive treatment of latent class and latent transition analysis for categorical data On a daily basis, researchers in the social, behavioral, and health sciences collect information and fit statistical models to the gathered empirical data with the goal of making significant advances in these fields. In many cases, it can be useful to identify latent, or unobserved, subgroups in a population, where individuals' subgroup membership is inferred from their responses on a set of observed variables. Latent Class and Latent Transition Analysis provides a comprehensive and unified introduction to this topic through one-of-a-kind, step-by-step presentations and coverage of theoretical, technical, and practical issues in categorical latent variable modeling for both cross-sectional and longitudinal data. The book begins with an introduction to latent class and latent transition analysis for categorical data. Subsequent chapters delve into more in-depth material, featuring: A complete treatment of longitudinal latent class models Focused coverage of the conceptual underpinnings of interpretation and evaluationof a latent class solution Use of parameter restrictions and detection of identification problems Advanced topics such as multi-group analysis and the modeling and interpretation of interactions between covariates The authors present the topic in a style that is accessible yet rigorous. Each method is presented with both a theoretical background and the practical information that is useful for any data analyst. Empirical examples showcase the real-world applications of the discussed concepts and models, and each chapter concludes with a "Points to Remember" section that contains a brief summary of key ideas. All of the analyses in the book are performed using Proc LCA and Proc LTA, the authors' own software packages that can be run within the SAS® environment. A related Web site houses information on these freely available programs and the book's data sets, encouraging readers to reproduce the analyses and also try their own variations. Latent Class and Latent Transition Analysis is an excellent book for courses on categorical data analysis and latent variable models at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners in the social, behavioral, and health sciences who conduct latent class and latent transition analysis in their everyday work.


Learning in Graphical Models

Learning in Graphical Models

Author: M.I. Jordan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 658

ISBN-13: 9401150141

DOWNLOAD EBOOK

In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.


Quantum Information and Foundations

Quantum Information and Foundations

Author: Giacomo Mauro D’Ariano

Publisher: MDPI

Published: 2020-03-23

Total Pages: 508

ISBN-13: 3039283804

DOWNLOAD EBOOK

Quantum information has dramatically changed information science and technology, looking at the quantum nature of the information carrier as a resource for building new information protocols, designing radically new communication and computation algorithms, and ultra-sensitive measurements in metrology, with a wealth of applications. From a fundamental perspective, this new discipline has led us to regard quantum theory itself as a special theory of information, and has opened routes for exploring solutions to the tension with general relativity, based, for example, on the holographic principle, on non-causal variations of the theory, or else on the powerful algorithm of the quantum cellular automaton, which has revealed new routes for exploring quantum fields theory, both as a new microscopic mechanism on the fundamental side, and as a tool for efficient physical quantum simulations for practical purposes. In this golden age of foundations, an astonishing number of new ideas, frameworks, and results, spawned by the quantum information theory experience, have revolutionized the way we think about the subject, with a new research community emerging worldwide, including scientists from computer science and mathematics.