Polymer Based Systems on Tissue Engineering, Replacement and Regeneration

Polymer Based Systems on Tissue Engineering, Replacement and Regeneration

Author: Rui L. Reis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 419

ISBN-13: 940100305X

DOWNLOAD EBOOK

Biodegradable, polymer-based systems are playing an increasingly pivotal role in tissue engineering replacement and regeneration. This type of biology-driven materials science is slated to be one of the key research areas of the 21st century. The following aspects are crucial: the development of adequate human cell culture to produce the tissues in adequate polymer scaffold materials; the development of culture technology with which human tissues can be grown ex-vivo in 3D polymer matrices; the development of material technology for producing the degradable, 3D matrices, having mechanical properties similar to natural tissue. In addressing these and similar problems, the book contains chapters on biodegradable polymers, polymeric biomaterials, surface modification for controlling cell-material interactions, scaffold design and processing, biomimetic coatings, biocompatibility evaluation, tissue engineering constructs, cell isolation, characterisation and culture, and controlled release of bioactive agents.


Biodegradable Systems in Tissue Engineering and Regenerative Medicine

Biodegradable Systems in Tissue Engineering and Regenerative Medicine

Author: Rui L. Reis

Publisher: CRC Press

Published: 2004-11-29

Total Pages: 590

ISBN-13: 0203491238

DOWNLOAD EBOOK

Conventional materials technology has yielded clear improvements in regenerative medicine. Ideally, however, a replacement material should mimic the living tissue mechanically, chemically, biologically and functionally. The use of tissue-engineered products based on novel biodegradable polymeric systems will lead to dramatic improvements in health


Learning from Nature How to Design New Implantable Biomaterials: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes

Learning from Nature How to Design New Implantable Biomaterials: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes

Author: Rui L. Reis

Publisher: Springer Science & Business Media

Published: 2005-12-29

Total Pages: 240

ISBN-13: 140202648X

DOWNLOAD EBOOK

The development of materials for any replacement or regeneration application should be based on the thorough understanding of the structure to be substituted. This is true in many fields, but particularly exigent in substitution and regeneration medicine. The demands upon the material properties largely depend on the site of application and the function it has to restore. Ideally, a replacement material should mimic the living tissue from a mechanical, chemical, biological and functional point of view. Of course this is much easier to write down than to implement in clinical practice. Mineralized tissues such as bones, tooth and shells have attracted, in the last few years, considerable interest as natural anisotropic composite structures with adequate mechanical properties. In fact, Nature is and will continue to be the best materials scientist ever. Who better than nature can design complex structures and control the intricate phenomena (processing routes) that lead to the final shape and structure (from the macro to the nano level) of living creatures? Who can combine biological and physico-chemical mechanisms in such a way that can build ideal structure-properties relationships? Who, else than Nature, can really design smart structural components that respond in-situ to exterior stimulus, being able of adapting constantly their microstructure and correspondent properties? In the described philosophy line, mineralized tissues and biomineralization processes are ideal examples to learn-from for the materials scientist of the future.


Multiphase Polymer Systems

Multiphase Polymer Systems

Author: Andreea Irina Barzic

Publisher: CRC Press

Published: 2016-09-19

Total Pages: 278

ISBN-13: 131535098X

DOWNLOAD EBOOK

Phase morphology in multicomponent polymer-based systems represents the main physical characteristic that allows for control of the material design and implicitly the development of new plastics. Emphasizing properties of these promising new materials in both solution and solid phase, this book describes the preparation, processing, properties, and practical implications of advanced multiphase systems from macro to nanoscales. It covers a wide range of systems including copolymers, polymer blends, polymer composites, gels, interpenetrating polymers, and layered polymer/metal structures, describing aspects of polymer science, engineering, and technology. The book analyzes experimental and theoretical aspects regarding the thermal and electrical transport phenomena and magnetic properties of crucial importance in advanced technologies. It reviews the most recent advances concerning morphological, rheological, interfacial, physical, fire-resistant, thermophysical, and biomedical properties of multiphase polymer systems. Concomitantly the book deals with basic investigation techniques that are sensitive in elucidating the features of each phase. It also discusses the latest research trends that offer new solutions for advanced bio- and nanotechnologies. Introduces an overview of recent studies in the area of multiphase polymer systems, their micro- and nanostructural evolutions in advanced technologies, and provides future outlooks, new challenges and opportunities. Discusses multicomponent structures that offer enhanced physical, mechanical, thermal, electrical, magnetic, and optical properties adapted to current requirements of modern technologies. Covers a wide range of materials, such as composites, blends, alloys, gels and interpenetrating polymer networks. Presents new strategies for controlling the micro- and nanomorphology and the mechanical properties of multiphase polymeric materials. Describes different applications of multiphase polymeric materials in various fields, including automotive, aeronautics and space industry, displays, and medicine.


Osteogenic-peptide Functionalized Polymeric Materials for Bone Regeneration Applications

Osteogenic-peptide Functionalized Polymeric Materials for Bone Regeneration Applications

Author: Gina Policastro

Publisher:

Published: 2016

Total Pages: 272

ISBN-13:

DOWNLOAD EBOOK

Both naturally occurring and synthetic polymeric materials are currently under investigation for use as tissue engineering constructs for bone defect repair. While, naturally occurring proteins and polysaccharides provide the inherent biochemical signaling necessary for proper bone regeneration, these constructs often lack mechanical and chemical properties suitable for this application. On the contrary, synthetic polymers, such as poly-¿-caprolactone (PCL) and polypropylene fumarate (PPF), are advantageous because of their tunable mechanical, degradation and chemical properties. However, these polymers tend to degrade into acidic byproducts that cause chronic inflammation in vivo and overall failure of the implant. Independently, both naturally occurring and synthetic materials fail to meet all of the necessary requirements for osteogenic tissue engineering. More recently, research has focused its attention on the synthesis of polymeric materials functionalized with bioactive peptides to overcome the previously mentioned limitations. Poly(ester urea)s are a high modulus, non-toxic, amino acid-based class of polymers that has been thoroughly investigated by the Becker group. Both its tunable properties and ease of functionality, makes this polymer ideal for bone tissue engineering applications. Phenylalanine-based poly(ester urea)s (poly(PHE)) have been reported to have tensile moduli in a range comparable to healthy bone tissue (~7 GPa), as well as non-acidic degradation byproducts. Poly(PHE)s can be easily functionalized with bioactive peptides, such as osteogenic growth peptide (OGP) for enhancement of its osteoinductive potential. OGP[10-14] is the active subunit of the naturally occurring tetradecapeptide that is known to upregulate proliferation, differentiation and matrix mineralization of osteoblast cell lines. In this dissertation, both OGP-tethered and OGP-crosslinked poly(PHE) materials were synthesized using efficient `click' chemistry techniques. These materials were tested in vitro and in vivo to reveal the enhanced osteoinductive ability of poly(PHE) materials for tissue engineering applications. With just 1% tethered OGP incorporation into the poly(PHE) network, osteogenic lineage commitment of human mesenchymal stem cells (hMSCs) was enhanced at both 2 and 4 weeks. In vivo results confirmed the osteoinductive ability of OGP[10-14]-tethered poly(PHE). Crosslinking OGP[10-14] into the poly(PHE) network was intended to enhance mechanical and osteoinductive properties of the polymer construct, simultaneously. Results show that toughness of the polymeric constructs increased with OGP-crosslinking, however a decrease in tensile modulus was observed, possibly due to low crosslinking density. Early osteogenic differentiation of mouse preosteoblast cells (MC3T3-E1) was also enhanced on these constructs. Osseointegration of metallic implants is also a major cause for concern in the medical world. Titanium is one of the most widely used implants for bone repair, however, it is not uncommon for these implants to fail due to a lack of tissue-metal integration in vivo. Here, the surface functionalization of titanium oxide (TiO2) substrates with catechol-bearing dendritic OGP[10-14] modular peptides is reported. Functionalized OGP[10-14] modular peptides were synthesized and non-covalently bound to the surface of TiO2. Osteogenic differentiation of MC3T3-E1 cells was tested to result in enhanced expression of osteogenic genes compared to cells cultured without OGP-functionalization. Finally, to keep with the theme of enhancing osteogenesis for bone tissue engineering applications, several other well-known bioactive peptides were studied in this dissertation. Bone morphogenetic protein 2 (BMP-2) is a peptide fragment responsible for upregulation of osteogenic differentiation of multipotent cell lines via enhanced expression of bone specific genes. The Arg-Gly-Asp (RGD) amino acid sequence is the well-known adhesion peptide found in extracellular matrix proteins such as vinculin and fibronectin. RGD has been shown in many studies, to influence cell lineage commitment through the promotion of focal adhesion and cell spreading on a surface. Here, the concentration-dependent synergistic effect of BMP-2 and RGD was studied on 2D gradient substrates. In nature, peptides do not exist and act as a single entity, therefore this study reveals a glimpse at what the future holds for studying concentration effects of multiple bioactive factors simultaneously for enhanced bone tissue regeneration. Each of these studies reveals the importance of blending synthetic materials with naturally occurring peptides for optimal tissue engineering constructs. There is a clear need for polymeric constructs with both the mechanical and biological properties necessary for bone tissue engineering, and this dissertation provides a solid foundation for the future of bone regeneration biomaterials in the Becker group.