This book introduces the new concept of “nanozyme”, which refers to nanomaterials with intrinsic enzymatic activity, rather than nanomaterials with biological enzymes incorporated on the surface. The book presents the cutting-edge advances in nanozyme, with emphasis on state-of-the-art applications in many important fields, such as in the biomedical fields and for environmental protection. The nanozyme is a totally new type of artificial enzyme and exhibits huge advantages over natural enzymes, including greater stability, low cost, versatility, simplicity, and suitability for industry. It is of interest to university researchers, R&D engineers, as well as graduate students in nanoscience and technology, and biology wishing to learn the core principles, methods, and the corresponding applications of “nanozyme”.
Approx.296 pages - Focuses on integrative approaches of the enzyme nanoparticle synthesis and its applications on biomedicine, biosensors, and biocatalysis - Encloses the potential challenges and developments of enzyme incorporated nanoparticles - Discusses the vital activities of nanozymes in enzyme mimicking processes and prudent bio-catalytic efficiency - Covers the latest methods and procedures involved in enzyme-incorporated nanomaterials
This book presents the state-of-the-art advances and applications of nanozymes, the recently developing branch of enzymology that synthesizes and uses nanomaterials that mimic the function of traditional enzymes. During the past decade, the study of nanozymes has grown rapidly. Several new nanomaterials that exhibit enzymatic actions have been identified, along with new applications for their practical use. This book draws upon the work of experts from around the world and provides an in-depth analysis and cutting-edge overview of nanozymes, with an eye toward their present and future applications. Chapters are arranged in a logical order to provide physio-chemical characterization of nanozyme and basic mechanisms of their enzymatic actions. Focusing on current limitations of nanozymes and their reaction kinetics, the book presents a comprehensive discourse on nanozyme engineering that includes possible surface modifications to enhance nanozyme effectiveness. It also focuses on traditional and novel nanozyme applications, such as biosensing, drug delivery, and disease therapy, as well as their use as antibacterials. An important addition in this book is the summary of emerging literature on nanozyme toxicology. This book is intended as a ready reference for advanced undergraduate and graduate students doing research in nanotechnology; materials science; chemistry; and chemical, biological, biomedical, and food engineering. Research and development scientists, engineers, and technologists working in the chemical and biological/biomedical industries will gain much from the materials in this book for their industry practice. Presents a comprehensive discourse on nanozyme engineering that includes possible surface modifications to enhance nanozyme effectiveness. Discusses metal organic frameworks as nanozymes. Reviews on traditional and novel nanozyme applications, such as biosensing, drug delivery, disease therapy, and their use as antibacterials. Examines nanozyme toxicology. Dr. Sundaram Gunasekaran is a Professor in the Department of Biological Systems Engineering at the University of Wisconsin–Madison.
This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.
This book summarizes nanotechnology-based agricultural research for crop productivity and the management of various plant pathogens. It deals with the application of nano-molecules for quick, cost-effective, and precise plant disease diagnostic procedures, plant pests and disease management, nano-pesticides, and nano-diagnostics. Further, it explains nanomaterials for biotic stress management, with an insight into the synthesis and modification of nanomaterials and their potential applications in different domains for disease management. Features include: Compilation of current research on the Nanomaterials as well as their versatile applications in plant biotic stress management Description of the role of nanomaterials as enzyme-mimicking nanoparticles, nano-pesticides, nano-fertilizers, and nanomaterials Review of day-to-day problems related to crop plants, their diagnostics, and stress management Exploration of trends in nanomaterial utility in diagnostics, enzyme-mimicking, and crop protection, and their possible role in plant disease management Study of pertinent nanomaterials including synthetic strategies, properties, chemistry, and applications This book is aimed at researchers and graduate students in plant pathology, genetic engineering, environmental science, botany, bioengineering, and nanotechnology.
Nanozymes: A Revolutionary Perspective on Approachable Bio-applications provides an in-depth overview of nanozymes, with a special focus on nanozymes synthesis and their various applications in biological sciences. The book starts with introductory chapters exploring the enzymatic mechanism of nanozymes and providing the concept of engineering to surface modification to achieve enhanced nanozymatic properties. Subsequent chapters focus on the application of nanozymes in many different fields, including biomedical science, agriculture, environmental science and more.This work is an important reference source for worldwide materials scientists and researchers interested on the resent developments, challenges, and future directions of nanozymes research. - Highlights recent developments and future directions of nanozymes research for readers across multidisciplinary fields - Features a broad range of applications of nanozymes, from environmental monitoring to therapeutic applications - Includes numerous illustrations to help readers easily understand the role of nanozymes-based tools in different areas
This book reviews the latest advances and biomedical applications of nanozymes, which are artificial nanomaterials exhibiting enzymatic properties similar to natural enzymes, but with less limitations than natural enzymes. Nanozymes display advantages such as facile synthesis, easy surface modification, improved stability, higher catalytic power, and target-specific binding. Nanozymes containing metals, metal oxides, carbon, and metal sulfide are actually used for cancer therapy, biomolecules sensing, bioimaging, disease diagnostics and diabetes management. The book discloses underlying mechanisms, concepts, recent trends, constraints, and prospects for nanomedicine using nanozymes.
Molecular Impacts of Nanoparticles on Plants and Algae covers molecular mechanisms of plants/algae related to cellular uptake and translocation of nanoparticles, and genome, transcriptome, proteome, and metabolome responses against it. The book introduces readers to state-of-the-art developments and trends of nanoparticles and plants/algae including interaction of nanoparticles with biological compounds in vitro. Nanoscience and nanotechnology have rapidly been developed in the last few decades, and they have a wide range of applications in industry, medicine, food, and agriculture. In agriculture, nanoparticles (NPs) have successfully been used for growth regulation, crop protection and improvement. They are also employed to cope with plant nutrient deficiencies. A predicted significant increase in the output of NPs will cause the discharge of a remarkable number of NPs to ecosystems, creating a need to understand how to optimize or mitigate their impact depending on their potential impact. These include serious health concerns for living organisms in aquatic, terrestrial, and atmospheric environments as well as human health through their potential existence in plant-based foods. The impact of NPs on living organisms including plants and algae, and uptake, translocation and molecular response mechanisms should be carefully considered before producing and using nanoparticles in large amounts as NPs, when entered to the body, induce changes in gene expressions related to the photosystem, water transport, cell wall formation, and cell division. Further recent studies have showed that NPs are potential agents or stressors to alter proteome, transcriptome, genome and metabolome responses. Impacts of nanoparticles on molecular mechanisms of plants and algae presents the most recent findings on nanoparticle and plant/algae interaction by focusing to molecular response mechanisms at genome, transcriptome, proteome and metabolome levels. In addition, uptake and translocation mechanism of nanoparticles will be assessed both in plant and algae Throughout this book, the latest developments and discoveries will be highlighted as well as open problems and future challenges in molecular mechanisms of plants/algae as a response of nanoparticles. - Presents genome, transcriptome, proteome, and metabolome responses in plants/algae, along with cellular uptake and translocation mechanisms - Illustrates nano-particle-plant/algae interactions - Covers both simple and higher organisms, addressing both algae and plant
This contributed volume provides a comprehensive understanding of synthetic protocols, characterization techniques, and current applications of iron oxide-based nanocomposite and nanoenzyme materials. It covers basic concepts and recent advancements in iron oxide-based nanocomposites and nanoenzymes, focusing on their synthesis, characterization, and functionalization for specific research applications. The different chapters in the book highlight key characterization techniques including Fourier Transform Infrared Spectroscopy, X-ray diffraction, Scanning Electron Microscopy, and Transmission Electron Microscopy, among others while it also explores various applications of these materials, such as adsorption of heavy metals and dyes, gas sensors, biomedical applications, photo-catalysis, and photovoltaic sensors. This book serves as a valuable resource for researchers and graduate students working in the fields of materials science, chemistry, physics, and biotechnology.
This book aims to summarize the latest research progress of biomedical nanozymes in diagnostic and therapeutic related fields. In terms of diagnostics, it will cover in vitro diagnostics, live analysis, and some emerging bioanalysis. In terms of therapeutics, it will introduce antioxidant therapy, peroxidation therapy and emerging therapy respectively. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. Based on the new ideas and developments presented in this book, it will be of interest to readers from different areas, such as chemistry, materials, nanoscience and nanotechnology, biomedical and clinical studies, etc.